运动想象迁移学习系列:DS-KTL
论文地址:https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1274320/full
论文题目:Dual selections based knowledge transfer learning for cross-subject motor imagery EEG classification
论文代码:无
0. 引言
为了解决受试者之间的样本差异这个问题,基于领域适应的跨学科场景得到了广泛的研究。然而,现有的方法经常会遇到目标域中冗余特征和伪标签预测不正确等问题。为了实现高性能的跨学科MI-EEG分类,本文提出了一种名为基于双选的知识迁移学习(DS-KTL)的新方法。DS-KTL 从源域中选择两个判别特征,并从目标域中校正伪标签。DS-KTL方法首先对样本进行质心对齐,然后采用黎曼切线空间特征