运动想象 (MI) 迁移学习系列 (13) : DS-KTL

论文提出了一种名为DS-KTL的新方法,用于解决跨受试者运动想象(MI)脑电图(EEG)分类中的样本差异问题。DS-KTL通过质心对齐、RTS特征提取、流形嵌入式空间特征选择、联合概率分布适应和特征适应正则化等步骤,实现了高效的数据迁移学习。在各种基准数据集上验证了其有效性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文地址:https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2023.1274320/full
论文题目:Dual selections based knowledge transfer learning for cross-subject motor imagery EEG classification
论文代码:无

0. 引言

为了解决受试者之间的样本差异这个问题,基于领域适应的跨学科场景得到了广泛的研究。然而,现有的方法经常会遇到目标域中冗余特征和伪标签预测不正确等问题。为了实现高性能的跨学科MI-EEG分类,本文提出了一种名为基于双选的知识迁移学习(DS-KTL)的新方法。DS-KTL 从源域中选择两个判别特征,并从目标域中校正伪标签。DS-KTL方法首先对样本进行质心对齐,然后采用黎曼切线空间特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

模型剧场工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值