Tensorflow2.0之用粒子群算法优化卷积神经网络的初始权重

98 篇文章 111 订阅
70 篇文章 34 订阅
本文介绍了如何在Tensorflow2.0中利用粒子群算法来优化卷积神经网络(CNN)的初始权重。首先,详细讲解了构建CNN的过程,包括数据预处理、网络结构(Conv2D、CNN模块、Dense模块)以及训练流程。然后,阐述了粒子群算法的实现步骤,包括适应度函数、粒子群生成和运算操作。通过这种方式,提高了CNN模型的训练效果。
摘要由CSDN通过智能技术生成
评论 82
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

cofisher

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值