浅谈hadoop和spark的shuffle异同?

   Apache Spark 的 Shuffle 过程与 Apache Hadoop 的 Shuffle 过程有着诸多类似,一些概念可直接套用,例如,Shuffle 过程中,提供数据的一端,被称作 Map 端,Map 端每个生成数据的任务称为 Mapper,对应的,接收数据的一端,被称作 Reduce 端,Reduce 端每个拉取数据的任务称为 Reducer,Shuffle 过程本质上都是将 Map 端获得的数据使用分区器进行划分,并将数据发送给对应的 Reducer 的过程。

--------------------------------

1. 从逻辑角度来讲,Shuffle 过程就是一个 GroupByKey 的过程,两者没有本质区别。只是 MapReduce 为了方便 GroupBy 存在于不同 partition 中的 key/value records,就提前对 key 进行排序。Spark 认为很多应用不需要对 key 排序,就默认没有在 GroupBy 的过程中对 key 排序。

2. 从数据流角度讲,两者有差别。MapReduce 只能从一个 Map Stage shuffle 数据,Spark 可以从多个 Map Stages shuffle 数据(这是 DAG 型数据流的优势,可以表达复杂的数据流操作,参见 CoGroup(), join() 等操作的数据流图 SparkInternals/4-shuffleDetails.md at master · JerryLead/SparkInternals · GitHub)。

3. Shuffle write/read 实现上有一些区别。以前对 shuffle write/read 的分类是 sort-based 和 hash-based。MapReduce 可以说是 sort-based,shuffle write 和 shuffle read 过程都是基于key sorting 的 (buffering records + in-memory sort + on-disk external sorting)。早期的 Spark 是 hash-based,shuffle write 和 shuffle read 都使用 HashMap-like 的数据结构进行 aggregate (without key sorting)。但目前的 Spark 是两者的结合体,shuffle write 可以是 sort-based (only sort partition id, without key sorting),shuffle read 阶段可以是 hash-based。因此,目前 sort-based 和 hash-based 已经“你中有我,我中有你”,界限已经不那么清晰。

4. 从数据 fetch 与数据计算的重叠粒度来讲,两者有细微区别。MapReduce 是粗粒度,reducer fetch 到的 records 先被放到 shuffle buffer 中休息,当 shuffle buffer 快满时,才对它们进行 combine()。而 Spark 是细粒度,可以即时将 fetch 到的 record 与 HashMap 中相同 key 的 record 进行 aggregate。5. 从性能优化角度来讲,Spark考虑的更全面。MapReduce 的 shuffle 方式单一。Spark 针对不同类型的操作、不同类型的参数,会使用不同的 shuffle write 方式

主要的区别:

一个落盘,一个不落盘,spark就是为了解决mr落盘导致效率低下的问题而产生的,原理还是mr的原理,只是shuffle放在内存中计算了,所以效率提高很多。
--------------------- 
作者:菜鸟级的IT之路 
来源:CSDN 
原文:https://blog.csdn.net/WYpersist/article/details/79982627 
版权声明:本文为博主原创文章,转载请附上博文链接!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值