东北大学应用数理统计知识点总结——复习知识点(浓缩版)

复习知识点(浓缩版)

第一章

  • 协方差矩阵的计算、证明变量独立
  • 期望定义、标准正态的绝对值的期望、方差
  • 标准正态查表
  • 中心极限定理、切比雪夫不等式
  • 常用分布对应的密度函数、期望、方差
  • 三大分布(非常重要,要会熟练推导)
  • 顺序统计量的密度函数,顺序统计量的期望、方差

第二章

  • 矩估计
  • 极大似然估计
  • 概率密度函数
  • 求对数
  • 对要求的参数求导
  • 导数等于0,求极值点(会求导数大于零、小于零的情况)
  • 区间估计
  • 构造三大分布和标准正态分布
  • 用分位点进行区间估计即可。注意F分布的非负性
  • 贝叶斯估计
    B ( d ) = E { E ( L [ θ , d ( ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n ) ] ∣ ξ 1 , ξ 2 , ⋅ ⋅ ⋅ , ξ n ) } B(d)= E \{ E(L[\theta, d(\xi_1, \xi_2, ··· , \xi_n)]| \xi_1, \xi_2, ··· , \xi_n) \} B(d)=E{E(L[θ,d(ξ1,ξ2,,ξn)]ξ1,ξ2,,ξn)}
    h ( y ∣ x 1 , ⋅ ⋅ ⋅ , x n ) = π ( y ) f ( x 1 , ⋅ ⋅ ⋅ , x n ∣ y ) ∫ − ∞ ∞ f ( x 1 , ⋅ ⋅ ⋅ , x n ∣ y ) d F θ ( y ) ∝ π ( y ) f ( x 1 , ⋅ ⋅ ⋅ , x n ∣ y ) h(y|x_1, ···, x_n) = \frac{\pi(y)f(x_1, ···, x_n | y )}{\int_{-\infty}^{\infty}f(x_1, ···, x_n | y)dF_\theta(y)} \propto \pi(y)f(x_1, ···, x_n | y ) h(yx1,,xn)=f(x1,,xny)dFθ(y)π(y)f(x1,,xny)π(y)f(x1,,xny)

第三章

  • 第一类错误,第二类错误
  • 假设检验(会推导拒绝域)
  • 是否服从某个分布
  • 取检验统计量
    K 2 = ∑ i = 1 k n p i ^ ( v i n − p i ^ ) 2 K^2 = \sum_{i = 1}^{k} \frac{n}{\hat{p_i}}(\frac{v_i}{n} - \hat{p_i})^2 K2=i=1kpi^n(nvipi^)2
  • 水平 α \alpha α 的一个拒绝域
    K 2 > χ α 2 ( k − r − 1 ) K^2 > \chi_\alpha^2(k-r-1) K2>χα2(kr1)
  • 变量间是否有显著性关系(上面是通用公式,下面那个式子只针对四格表,计算方便)
    K 2 = n [ ∑ i = 1 s ∑ j = 1 t n i j 2 n i ⋅ n ⋅ j − 1 ] K^2 = n[ \sum_{i=1}^{s}\sum_{j=1}^{t} \frac{n_{ij}^2}{n_{i·}n_{·j}} - 1] K2=n[i=1sj=1tninjnij21]
    K 2 > χ α 2 ( ( s − 1 ) ( t − 1 ) ) K^2 > \chi_\alpha^2((s-1)(t-1)) K2>χα2((s1)(t1))
  • 四格表
    K 2 = n ( n 11 n 22 − n 12 n 21 ) 2 n 1 ⋅ n 2 ⋅ n ⋅ 1 n ⋅ 2 K^2 = \frac{n(n_{11}n_{22}-n_{12}n_{21})^2}{n_{1·}n_{2·}n_{·1}n_{·2}} K2=n1n2n1n2n(n11n22n12n21)2

K 2 > χ α 2 ( 1 ) K^2 > \chi_\alpha^2(1) K2>χα2(1)

第四章

  • 单因素方差检验表(r表示元素个数,n表示样本数, n i n_i ni表示每个元素对应样本数, y i ‾ \overline{y_i} yi表示每个元素样本的平均数)
    C S S = ∑ i = 1 r n i ( y i ‾ − y ‾ ) 2 CSS = \sum_{i=1}^{r} n_i (\overline{y_i} - \overline{y})^2 CSS=i=1rni(yiy)2
    R S S = ∑ i = 1 r ∑ j = 1 n i ( y i j − y i ‾ ) 2 RSS = \sum_{i=1}^{r} \sum_{j=1}^{n_i}(y_{ij} - \overline{y_i})^2 RSS=i=1rj=1ni(yijyi)2
    单因素方差分析表
    C M S = C S S r − 1 , R M S = R S S n − r , F − 比 = C M S R M S CMS = \frac{CSS}{r-1}, RMS = \frac{RSS}{n-r}, F-比 = \frac{CMS}{RMS} CMS=r1CSS,RMS=nrRSS,F=RMSCMS
  • 拒绝域
    F ≥ F α ( r − 1 , n − r ) F \ge F_\alpha(r-1, n-r) FFα(r1,nr)

第五章

  • 一元线性回归方程中, β 0 ^ \hat{\beta_0} β0^ β 1 ^ \hat{\beta_1} β1^ 的估计及分布

  • β 0 ^ = y ‾ − β 1 ^ x ‾ \hat{\beta_0} = \overline{y} - \hat{\beta_1}\overline{x} β0^=yβ1^x

  • β 1 ^ = L x y L x x \hat{\beta_1} = \frac{L_{xy}}{L_{xx}} β1^=LxxLxy

  • 一元线性回归方程中, σ 2 ^ \hat{\sigma^2} σ2^ 的估计

  • σ ^ 2 = 1 n − 2 ( L y y − β 1 ^ L x y ) \hat{\sigma}^2 = \frac{1}{n-2}(L_{yy} - \hat{\beta_1}L_{xy}) σ^2=n21(Lyyβ1^Lxy)

  • n − 2 σ 2 σ 2 ^ \frac{n-2}{\sigma^2} \hat{\sigma^2} σ2n2σ2^ ~ χ 2 ( n − 2 ) \chi^2(n-2) χ2(n2)

  • 假设检验

  • H 0 : β 1 = 0 H_0: \beta_1 = 0 H0:β1=0 (正态分布——标准正态——t分布——F分布)
    F ( 1 , n − 2 ) ⇔ ( n − 2 ) L x y 2 L x x L y y − L x y 2 F(1,n-2) \Leftrightarrow \frac{(n-2)L_{xy}^2}{L_{xx}L_{yy} - L_{xy}^2} F(1,n2)LxxLyyLxy2(n2)Lxy2

  • 否定域
    F = ( n − 2 ) r 2 ( 1 − r 2 ) > F 0.05 ( 1 , n − 2 ) F = \frac{(n-2)r^2}{(1-r^2)} > F_{0.05}(1,n-2) F=(1r2)(n2)r2>F0.05(1,n2)

  • 回归系数的区间估计
    β 1 ^ σ ^ ∑ i = 1 n ( x i − x ‾ ) 2 ⇔ t ( n − 2 ) \frac{\hat{\beta_1}}{\hat{\sigma}}\sqrt{\sum_{i=1}^n(x_i-\overline{x})^2} \Leftrightarrow t(n-2) σ^β1^i=1n(xix)2 t(n2)
    β 1 ^ − σ ^ ∑ i = 1 n ( x i − x ‾ ) 2 t α / 2 ( n − 2 ) — — β 1 ^ + σ ^ ∑ i = 1 n ( x i − x ‾ ) 2 t α / 2 ( n − 2 ) \hat{\beta_1} - \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n(x_i-\overline{x})^2}}t_{\alpha/2}(n-2) —— \hat{\beta_1} + \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n(x_i-\overline{x})^2}}t_{\alpha/2}(n-2) β1^i=1n(xix)2 σ^tα/2(n2)β1^+i=1n(xix)2 σ^tα/2(n2)

  • 回归方程的预测
    y 0 − y 0 ∗ ⇔ N ( 0 , σ 2 [ 1 + 1 n + ( x 0 − x ‾ ) 2 ∑ i = 1 n ( x i − x ‾ ) 2 ] ) y_0 - y_0^* \Leftrightarrow N(0, \sigma^2[1 + \frac{1}{n} + \frac{(x_0 - \overline{x} )^2}{\sum_{i=1}^n (x_i - \overline{x})^2}]) y0y0N(0,σ2[1+n1+i=1n(xix)2(x0x)2])
    β 0 ^ + β 1 x 0 − h ^ — — β 0 ^ + β 1 x 0 + h ^ \hat{\beta_0} + \hat{\beta_1 x_0 - h}——\hat{\beta_0} + \hat{\beta_1 x_0 + h} β0^+β1x0h^β0^+β1x0+h^
    h = t α / 2 ( n − 2 ) σ ^ 1 + 1 n + ( x 0 − x ‾ ) 2 ∑ i = 1 n ( x i − x ‾ ) 2 h = t_{\alpha/2}(n-2)\hat{\sigma}\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x} )^2}{\sum_{i=1}^n (x_i - \overline{x})^2}} h=tα/2(n2)σ^1+n1+i=1n(xix)2(x0x)2

  • 9
    点赞
  • 40
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值