【更新中】深度学习——梳理,准备面试

最近在准备找工作面试,本文在此梳理了【深度学习】中涉及的面试要用的知识点,主要从目前项目出发,再延伸到别的知识点。 1. 关于模型深度: On the Number of Linear Regions of Deep Neural Networks On the Expressive Pow...

2018-09-10 16:57:10

阅读数:70

评论数:0

python积累

目录   1.  PIL的draw.rectangle 2. 二维数组的创立 3. 一些写法 4. 在线笔试多行输入 5. 字典根据key和value进行排序  6. 正则表达式     1.  PIL的draw.rectangle 可以指定画线的粗细 from PIL ...

2018-08-21 11:46:07

阅读数:304

评论数:0

leetcode 记录

按照tag来写: 目录 一、tag == '二分查找' 29. 两数相除 33. 搜索旋转排序数组 二、tag == '树' 树的常用代码 94. 二叉树中序遍历 三、tag == ‘深度优先搜索’ 529. 扫雷游戏 841. 钥匙和房间 547.朋友圈 四、tag ==...

2018-08-11 23:10:19

阅读数:72

评论数:0

日常Q&A

日常Q&A总结 列表: Ind 问题 涉及原理 回答 1 目标检测算法中怎么评判confidence?mAP中能体现吗? mAP的计算   2 之前那个 C=x*A+y*B 的问题,BN层为什么可以保证A的所有weigh...

2018-08-01 10:47:21

阅读数:33

评论数:0

【更新中】目标检测——梳理,准备面试

最近在准备找工作面试,本文在此梳理了目标检测中涉及的面试要用的知识点,包含了一下几方面:     My paper reading 过程总结: 实际步骤 所花时间 评价 改进 先看了abstract, 1 introduction 以及 4 related works...

2018-07-18 21:39:18

阅读数:564

评论数:0

keras搭建并训练【回归-分类】的multi-task模型——问题总结

问题与解决: 1. 【已解决】could not convert BatchDescriptor 问题描述:模型可以训练(fit)、预测(predict),但是在存储中间层特征时出现这个问题: 解决过程: 单纯的age和iden都是这个问题,现在尝试去掉球坐标变化这一层看能不能存特征。 无效...

2019-01-12 14:32:42

阅读数:14

评论数:0

keras下使用lambda搭建n维球坐标转换层

Table of Contents n维球坐标转换公式 n维球坐标转换的代码实现 遇到问题 关于n维球坐标转换,网络上有公式,但是几乎没找到实现代码.在此将自己在keras下用lambda函数写球坐标转换层的实现过程记录下来,并且记下来一些中间遇到的坑. n维球坐标转换公式 参考下图:...

2019-01-08 22:13:34

阅读数:7

评论数:0

ubuntu 系统使用工具及命令

Table of Contents 显示类 分屏显示快捷键 terminal分屏工具 网络类 查看局域网内IP 文件管理类 批量修改文件名(rename) 查看磁盘使用率 查看具体文件夹使用情况 批量解压缩 批量删除指定文件夹 批量删除文件 显示类 分屏显示快捷键 c...

2019-01-08 15:32:42

阅读数:21

评论数:1

Softmax、L-Softmax、A-Softmax的整理对比

目录 Large-Margin Softmax Loss  A-Softmax loss 附录 本文中对比了L-Softmax Loss 和A-Softmax loss两种变式,仅作为比较。对于两种损失函数的具体介绍见后期整理的论文笔记。 Large-Margin Softmax Los...

2019-01-06 17:14:26

阅读数:15

评论数:0

【论文笔记】Orthogonal Deep Features Decomposition for Age-Invariant Face Recognition 多任务网络

论文题目:Orthogonal Deep Features Decomposition for Age-Invariant Face Recognition 目录 文章主题 研究现状 方法原理 方法介绍 模型整体框架 特征的正交分解 多任务学习 文章主题 在跨年龄人脸识别 (A...

2019-01-03 20:21:34

阅读数:13

评论数:0

【论文写作】Google scholar 镜像

  百度学术的缺点: 很多论文找不到 BibTeX信息不完整 Google scholar镜像: http://ac.scmor.com/ http://www.6453.net/  

2018-12-04 13:04:11

阅读数:25

评论数:0

【论文写作】之LaTeX中插入Visio图文件

小论文中的结构图等都是在Visio中画的,导入到LaTeX中: 在Visio中将图修改好 将.vsdx文件另存为.pdf格式 在Adobe acrobat中将.pdf文件存为.eps格式: 编辑–>选中自己需要的部分–>双击自己选中的部分–&a...

2018-11-19 13:14:31

阅读数:10

评论数:0

【论文写作工具探讨】Mac+latex

关于Mac平台上如何写学位论文,最近研究了一下各个平台,有以下几个备选方案: 平台 优点 缺点 资料 Office word 熟悉 后期格式调整花费时间多; 不同平台、版本之间兼容性不好; 导师不好修改; 不能进行交叉引用 ...

2018-11-16 16:28:30

阅读数:21

评论数:0

面试准备——目标检测、分类

目录 目标检测 一、目标检测任务 I. 目标检测领域的瓶颈 II. 针对小目标检测 III. 针对检测速度 IV. 本领域知识面 二、目标检测模型 I. 整体概括YOLO、SSD、R-CNN系列模型的各自特点、异同之处。 II. 分别介绍三个系列算法inference过程。  ...

2018-09-23 21:43:34

阅读数:229

评论数:0

深度学习——过拟合问题

overfitting 表现: 策略: 1. 正则化措施 a. 权值衰减(weight decay) b. 多模型ensemble c. 数据增强 d. 噪声 e. Dropout 更多参考资料 overfitting 表现: 训练集好测试集不好 策略: (1) 数据增...

2018-09-14 14:51:44

阅读数:125

评论数:0

【面试经验】HKWS 算法工程师——电话面试经验

整体感觉: 一面,持续半个多小时。对着简历问项目,以及背后涉及到的深度学习知识与训练经验,没有问算法题。 具体: SSD和YOLO的区别和各自特点? 你认为目前目标检测任务中的最大障碍是什么/什么最限制了目标检测性能? 提升小目标检测性能有什么方法? l1, l2正则化分别有什么作用?...

2018-09-14 12:14:56

阅读数:40

评论数:0

【面试经验】KS 算法工程师——电话面试经验

今天接到了两轮电话面试,第一场大概五十分钟,第二场在三十分钟以后,大概持续半个多小时结束。两场都有问目标检测项目,以及一些别的算法题和数学题,整体算是比较有难度,在此记录。 一面(50min): 问了项目,问了faster RCNN,YOLO以及SSD的东西,提问为什么要用anchor?直接从...

2018-09-13 22:02:29

阅读数:53

评论数:0

SSD 论文与项目总结

一、SSD论文 总体描述 SSD全程为single-shot multibox detection,其中一个要点single shot的意思是将分类和回归的loss在同一个过程中计算;另一个要点multibox,即算法中预先设定好一些列不同scale、不同aspect ratio的def...

2018-09-12 21:14:14

阅读数:38

评论数:0

python积累——字符串总结

笔试题中常见的有这样几种操作:查找、替换、拼接,以及一些简单的操作,在此总结下常用的简洁写法。 目录 1. 字符串的判断 2. 字符串中查找子字符串的下标 3. 子字符串替换 4. 其他操作 (0)补充字符串的其他操作 (1)将list连接成字符串 (2)使用split切分 1....

2018-09-08 00:25:53

阅读数:35

评论数:0

python——迷宫问题总结

关于迷宫问题,常见会问能不能到达某点,以及打印到达的最短路径。可以用回溯法+递归来解决 代码一:dfs + 回溯 将矩阵外围以及路障统一设置为-1 设置current_step和next_step两个值。如果面临的点大于next_step,或者从未走过,就可以对它递归 ...

2018-09-07 14:03:08

阅读数:347

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭