题目链接:poj1284
题意:
给出一个
p(3<=p<65536)
,求这个数有多少个原根
思路:
何为原根?
由费马小定理可知 如果a于p互质 则有a^(p-1)≡1(mod p)
对于任意的a是不是一定要到p-1次幂才会出现上述情况呢?
显然不是,当第一次出现a^k≡1(mod p)时, 记为ep(a)=k 当k=(p-1)时,称a是p的原根
每个素数恰好有f(p-1)个原根(f(x)为欧拉函数)
定理:对于奇素数m, 原根个数为phi(phi(m)), 由于phi(m)=m-1, 所以为phi(m-1)。
某大牛的证明:
{xi%p | 1 <= i <= p - 1} = {1,2,...,p-1} 等价于 {xi%(p-1) | 1 <= i <= p - 1} = {0,1,2,...,p-2},即为(p-1)的完全剩余系
若x,x2...x(p-1)是(p-1)的完全剩余系,
根据定理,可以推出若gcd(x, p-1) = 1时, (1,x,...,x(p-2))也是(p-1)的完全剩余系
因为若xi != xj (mod p-1),那么x*xi != x*xj (mod p-1),与条件m矛盾,所以 xi = xj (mod p-1),
由此可以确定答案为EulerPhi(p-1)
代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include<iostream>
#include<map>
using namespace std;
#define maxn 100005
#define mod 9901
int prime[maxn],phi[maxn];
bool unprime[maxn];
void Euler()
{
int i,j,k = 0;
for(i = 2; i <maxn; i++)
{
if(!unprime[i])
{
prime[k++] = i;
phi[i] = i-1;//此处处理phi(p)
}
for(j = 0; j < k && prime[j]*i <maxn; j++)
{
unprime[prime[j] *i] = true;
if(i % prime[j] != 0)
{
//此处处理phi(i*p)=phi(i)*phi(p) ,p不是i的约数
//phi[prime[j]]==prime[j]-1
phi[prime[j]*i] = phi[i]*(prime[j]-1);
}
else
{
//此处处理phi(i*p),p是i的约数
phi[prime[j]*i] = phi[i]*prime[j];
break;
}
}
}
}
int main()
{
int n;
Euler();
while(~scanf("%d",&n))
{
printf("%d\n",phi[phi[n]]);
}
return 0;
}