poj1284 Primitive Roots:欧拉函数+原根

题目链接:poj1284

题意:

给出一个 p(3<=p<65536) ,求这个数有多少个原根


思路:

何为原根?
由费马小定理可知 如果a于p互质 则有a^(p-1)≡1(mod p)
对于任意的a是不是一定要到p-1次幂才会出现上述情况呢?
显然不是,当第一次出现a^k≡1(mod p)时, 记为ep(a)=k 当k=(p-1)时,称a是p的原根
每个素数恰好有f(p-1)个原根(f(x)为欧拉函数)
 
定理:对于奇素数m, 原根个数为phi(phi(m)), 由于phi(m)=m-1, 所以为phi(m-1)。
某大牛的证明:

{xi%p | 1 <= i <= p - 1} = {1,2,...,p-1} 等价于 {xi%(p-1) | 1 <= i <= p - 1} = {0,1,2,...,p-2},即为(p-1)的完全剩余系

若x,x2...x(p-1)是(p-1)的完全剩余系,

根据定理,可以推出若gcd(x, p-1) = 1时, (1,x,...,x(p-2))也是(p-1)的完全剩余系

因为若xi != xj (mod p-1),那么x*xi != x*xj (mod p-1),与条件m矛盾,所以 xi = xj (mod p-1),

由此可以确定答案为EulerPhi(p-1)

代码

#include <cstdio>
#include <cstring>
#include <algorithm>
#include<iostream>
#include<map>
using namespace std;
#define maxn  100005
#define mod 9901
int prime[maxn],phi[maxn];
bool unprime[maxn];
void Euler()
{
    int i,j,k = 0;
    for(i = 2; i <maxn; i++)
    {
        if(!unprime[i])
        {
            prime[k++] = i;
            phi[i] = i-1;//此处处理phi(p)
        }
        for(j = 0; j < k && prime[j]*i <maxn; j++)
        {
            unprime[prime[j] *i] = true;
            if(i % prime[j] != 0)
            {
                //此处处理phi(i*p)=phi(i)*phi(p) ,p不是i的约数
                //phi[prime[j]]==prime[j]-1
                phi[prime[j]*i] = phi[i]*(prime[j]-1);

            }
            else
            {
                //此处处理phi(i*p),p是i的约数
                phi[prime[j]*i] = phi[i]*prime[j];
                break;
            }
        }
    }
}

int main()
{
    int n;
    Euler();
    while(~scanf("%d",&n))
	{
		printf("%d\n",phi[phi[n]]);
	}
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值