大数因数分解Pollard_rho 算法详解
适用范围:给你一个大数n,将它分解它的质因子的乘积的形式。
P.S. 在下面的论述中会使用到Miller_rabin和快速乘法和快速幂,如果有兴趣请看另一篇博文。
不过其实你只需要知道Miller_rabin是判断一个数是否是素数。q_mul是求(a*b)% mod,q_pow是求(a^b) % mod即可。
Miller_rabin素数判断:http://blog.csdn.net/maxichu/article/details/45458569
大数分解最简单的思想也是试除法,这里就不再展示代码了,就是从2到sqrt(n),一个一个的试验,直到除到1或者循环完,最后判断一下是否已经除到1了即可。
但是这样的做的复杂度是相当高的。一种很妙的思路是找到一个因子(不一定是质因子),然后再一路分解下去。这就是基于Miller_rabin的大数分解法Pollard_rho大数分解。
Pollard_rho算法的大致流程是 先判断当前数是否是素数(Miller_rabin)了,如果是则直接返回。如果不是素数的话,试图找到当前数的一个因子(可以不是质因子)。然后递归对该因子和约去这个因子的另一个因子进行分解。
那么自然的疑问就是,怎么找到当前数n的一个因子?当然不是一个一个慢慢试验,而是一种神奇的想法。其实这个找因子的过程我理解的不是非常透彻,感觉还是有一点儿试的意味,但不是盲目的枚举,而是一种随机化算法。我们假设要找的因子为p,他是随机取一个x1,由x1构造x2,使得{p可以整除x1-x2 && x1-x2不能整除n}则p=gcd(x1-x2,n),结果可能是1也可能不是1。如果不是1就找寻成功了一个因子,返回因子;如果是1就寻找失败,那么我们就要不断调整x2,具体的办法通常是x2=x2*x2+c(c是自己定的)直到出现x2出现了循环==x1了表示x1选取失败重新选取x1重复上述过程。(似乎还存在一个每次找寻范围*2的优化,但是不太懂。。。)
因为x1和x2再调整时最终一定会出现循环,形成一个类似希腊字母rho的形状,故因此得名。
另外通过find函数来分解素数,如果找到了一个素数因子则加入到因子map中,否则如果用Pollard找到一个因子则递归去找素数因子。
上代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <map>
using namespace std;
const int times = 50;
int number = 0;
map<long long, int>m;
long long Random( long long n )
{
return ((double)rand( ) / RAND_MAX*n + 0.5);
}
long long q_mul( long long a, long long b, long long mod ) //快速乘法取模
{
long long ans = 0;
while(b)
{
if(b & 1)
{
ans += a;
}
b /= 2;
a = (a + a) % mod;
}
return ans;
}
long long q_pow( long long a, long long b, long long mod ) //快速乘法下的快速幂,叼
{
long long ans = 1;
while(b)
{
if(b & 1)
{
ans = q_mul( ans, a, mod );
}
b /= 2;
a = q_mul( a, a, mod );
}
return ans;
}
bool witness( long long a, long long n )//miller_rabin算法的精华
{
long long tem = n - 1;
int j = 0;
while(tem % 2 == 0)
{
tem /= 2;
j++;
}
long long x = q_pow( a, tem, n ); //得到a^(n-1) mod n
if(x == 1 || x == n - 1) return true;
while(j--)
{
x = q_mul( x, x, n );
if(x = n - 1) return true;
}
return false;
}
bool miller_rabin( long long n ) //检验n是否是素数
{
if(n == 2)
return true;
if(n < 2 || n % 2 == 0)
return false;
for(int i = 1; i <= times; i++) //做times次随机检验
{
long long a = Random( n - 2 ) + 1; //得到随机检验算子 a
if(!witness( a, n )) //用a检验n是否是素数
return false;
}
return true;
}
long long gcd( long long a, long long b )
{
if(b == 0)
return a;
return gcd( b, a%b );
}
long long pollard_rho( long long n, long long c )//找到n的一个因子
{
long long x, y, d, i = 1, k = 2;
x = Random( n - 1 ) + 1;
y = x;
while(1)
{
i++;
x = (q_mul( x, x, n ) + c) % n;
d = gcd( y - x, n );
if(1<d&&d<n)
return d;
if(y == x)//找到循环,选取失败,重新来
return n;
if(i == k) //似乎是一个优化,但是不是很清楚
{
y = x;
k <<= 1;
}
}
}
void find( long long n, long long c )
{
if(n == 1)
return;
if(miller_rabin( n ))
{
m[n]++;
number++;
return;
}
long long p = n;
while(p >= n)
p = pollard_rho( p, c-- );
find( p, c );
find( n / p, c );
}
int main( )
{
long long tar;
while(cin >> tar)
{
number = 0;
m.clear();
find( tar, 2137342 );
printf( "%lld = ", tar );
if(m.empty())
{
printf( "%lld\n", tar );
}
for(map<long long, int>::iterator c = m.begin(); c != m.end();)
{
printf( "%lld^%d", c->first, c->second );
if((++c) != m.end())
printf( " * " );
}
printf( "\n" );
}
return 0;
}