HDU 3277 Marriage Match III(并查集+二分+最大流)
http://acm.hdu.edu.cn/showproblem.php?pid=3277
题意:
有N个女孩要与N个男孩玩配对游戏.每个女孩有一个可选男孩的集合(即该女孩可以选自己喜欢集合中的任意一个男孩作为该轮的搭档).且女孩除了能选自己喜欢的男孩外还能选任意K个自己不喜欢的男孩.
然后从第一轮开始,每个女孩都要和一个不同的男孩配对.如果第一轮N个女孩都配对成功,那么就开始第二轮配对,女孩依然从自己的备选男孩集合中选择,但是不能选那些已经被该女孩在前几轮选择中选过的男孩了(比如i女孩在第一轮选了j男孩,那么i在第二轮就不能选j男孩了). 问你游戏最多能进行多少轮?
分析:
本题是HDU3081的加强版,之前的证明与分析可以参考HDU3081:
http://blog.csdn.net/qq_36782366/article/details/77150918
由于本题多了一个条件:女孩除了能选自己喜欢的男孩外还能选任意K个自己不喜欢的男孩.所以现在建图方式需要略微改变:
假设当前我们二分轮数为limit, 源点s编号0,女孩i分成两个点i和i+n编号(编号i的点用来连接该女孩喜欢的男孩,编号为i+n的点用来连接该女孩不喜欢的男孩), 男孩编号为2n+1到2n+n, 汇点t编号为3n+1.
首先源点s到第i个女孩有边(s, i, limit)
第i个女孩的i点到i+n点有边(i, i+n, k)
如果第i个女孩可以选男孩j,那么有边(i, j, 1). 否则有边(i+n, j, 1)
每个男孩j到汇点t有边(j, t, limit)
最终看max_flow 是否== limit*n 即可.
(注:依然用并查集算出女孩喜欢的男孩集合保存到can数组中,can[i][j]==true表示第i个女孩可以选第j个男孩.这里的可选指的是女孩没和男孩吵架或女孩的朋友没和男孩吵架.)
#include<cstdio>
#include<cstring>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=800+20;//之前这里只写10+5,一直TLE,真是悲剧
struct Edge
{
Edge(){}
Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow){}
int from,to,cap,flow;
//cap是容量 flow是流量
};
struct Dinic
{
int n,m,s,t; //结点数,边数(包括反向弧),源点与汇点编号
vector<Edge> edges; //边表 edges[e]和edges[e^1]互为反向弧
vector<int> G[maxn]; //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
bool vis[maxn]; //BFS使用,标记一个节点是否被遍历过
int d[maxn]; //从起点到i点的距离
int cur[maxn]; //当前弧下标
void init(int n,int s,int t)
{
this->n=n,this->s=s,this->t=t;
for(int i=0;i<=n;i++) G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int cap)
{
edges.push_back( Edge(from,to,cap,0) );
edges.push_back( Edge(to,from,0,0) );//这条是反向边
m = edges.size();//总共边的数量
G[from].push_back(m-2);//正向边在edges数组中的编号
G[to].push_back(m-1);//反向边在edges数组中的编号
}
bool BFS()
{
memset(vis,0,sizeof(vis));
queue<int> Q;//用来保存节点编号的
Q.push(s);
d[s]=0;
vis[s]=true;
while(!Q.empty())
{
int x=Q.front(); Q.pop();
for(int i=0; i<G[x].size(); i++)//x所连的边
{
Edge& e=edges[G[x][i]];//取出所连的那条边
if(!vis[e.to] && e.cap>e.flow)//如果还没有经过 且流量小于容量 还可以再通
{
vis[e.to]=true;
d[e.to] = d[x]+1;
Q.push(e.to);
}
}
}
return vis[t];//表示能否到大t点 不能的话返回false
}
int DFS(int x,int a)
{
if(x==t || a==0)return a;//到大汇点或者流量为0时返回
int flow=0,f;//flow用来记录从x到t的最小残量
for(int& i=cur[x]; i<G[x].size(); i++)
{
Edge& e=edges[G[x][i]];
if(d[x]+1==d[e.to] && (f=DFS( e.to,min(a,e.cap-e.flow) ) )>0 )
//判断是否是可行边 并对其进行深搜 是否有结果
{
e.flow +=f;
edges[G[x][i]^1].flow -=f;//与其对应的反向边流量减少 以便于后悔恢复
flow += f;
a -= f;
if(a==0) break;
}
}
return flow;
}
int Maxflow()
{
int flow=0;
while(BFS())
{
memset(cur,0,sizeof(cur));
flow += DFS(s,INF);
}
return flow;
}
}DC;
int pre[maxn];
int dis[maxn][maxn];
int fid(int x)
{
int r=x;
while(pre[r]!=r)
r=pre[r];
int i=x,j;
while(i!=r)
{
j=pre[i];
pre[i]=r;
i=j;
}
return r;
}
void join(int x,int y)
{
int fx=fid(x),fy=fid(y);
if(fx!=fy)
{
pre[fx]=fy;
}
}
bool check(int n,int limit,int k)
{
DC.init(800,0,780);
for(int i=1;i<=n;i++)
DC.AddEdge(0,i,limit);
for(int i=1;i<=n;i++)
for(int j=501;j<=500+n;j++)
{
if(dis[i][j])
DC.AddEdge(i,j,1);
else
DC.AddEdge(i+250,j,1);
}
for(int j=500+1;j<=500+n;j++)
DC.AddEdge(j,780,limit);
for(int i=1;i<=n;i++)
DC.AddEdge(i,i+250,k);
if(DC.Maxflow()==limit*n)
return true;
return false;
}
int main()
{
//0是源点 780是汇点
//1-250是女连喜欢男生
//251-500 女连不喜欢男生
//501-750 男生
int n,m,f,k;
int t;
int u,v;
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d%d",&n,&m,&k,&f);
memset(dis,0,sizeof dis);
for(int i=1;i<=n;i++)pre[i]=i;
for(int i=0;i<m;i++)
{
scanf("%d%d",&u,&v);
dis[u][v+500]=1 ;
}
for(int i=0;i<f;i++)
{
scanf("%d%d",&u,&v);
join(u,v);
}
for(int i=1;i<=n;i++)
for(int j=i+1;j<=n;j++)
if(fid(i)==fid(j))
{
for(int k=501;k<=500+n;k++)
{
dis[i][k]=dis[j][k]=(dis[i][k]||dis[j][k]);
}
}
int l=0,r=250;
int ans;
while(l<=r)
{
int mid=(l+r)/2;
if(check(n,mid,k))
{
ans=mid;
l=mid+1;
}
else
{
r=mid-1;
}
}
printf("%d\n",ans);
}
return 0;
}