HDU 3277 Marriage Match III(并查集+二分+最大流)

HDU 3277 Marriage Match III(并查集+二分+最大流)

http://acm.hdu.edu.cn/showproblem.php?pid=3277

题意:

       有N个女孩要与N个男孩玩配对游戏.每个女孩有一个可选男孩的集合(即该女孩可以选自己喜欢集合中的任意一个男孩作为该轮的搭档).女孩除了能选自己喜欢的男孩外还能选任意K个自己不喜欢的男孩.

然后从第一轮开始,每个女孩都要和一个不同的男孩配对.如果第一轮N个女孩都配对成功,那么就开始第二轮配对,女孩依然从自己的备选男孩集合中选择,但是不能选那些已经被该女孩在前几轮选择中选过的男孩了(比如i女孩在第一轮选了j男孩,那么i在第二轮就不能选j男孩了). 问你游戏最多能进行多少轮?

分析:

       本题是HDU3081的加强版,之前的证明与分析可以参考HDU3081:

http://blog.csdn.net/qq_36782366/article/details/77150918

       由于本题多了一个条件:女孩除了能选自己喜欢的男孩外还能选任意K个自己不喜欢的男孩.所以现在建图方式需要略微改变:

       假设当前我们二分轮数为limit, 源点s编号0,女孩i分成两个点i和i+n编号(编号i的点用来连接该女孩喜欢的男孩,编号为i+n的点用来连接该女孩不喜欢的男孩), 男孩编号为2n+1到2n+n, 汇点t编号为3n+1.

       首先源点s到第i个女孩有边(s, i, limit)

       第i个女孩的i点到i+n点有边(i, i+n, k)

       如果第i个女孩可以选男孩j,那么有边(i, j, 1). 否则有边(i+n, j, 1)

       每个男孩j到汇点t有边(j, t, limit)

       最终看max_flow 是否== limit*n 即可.

(:依然用并查集算出女孩喜欢的男孩集合保存到can数组中,can[i][j]==true表示第i个女孩可以选第j个男孩.这里的可选指的是女孩没和男孩吵架或女孩的朋友没和男孩吵架.)

#include<cstdio>
#include<cstring>
#include<queue>
#define INF 1e9
using namespace std;
const int maxn=800+20;//之前这里只写10+5,一直TLE,真是悲剧

struct Edge
{
    Edge(){}
    Edge(int from,int to,int cap,int flow):from(from),to(to),cap(cap),flow(flow){}
    int from,to,cap,flow;
    //cap是容量  flow是流量
};

struct Dinic
{
    int n,m,s,t;            //结点数,边数(包括反向弧),源点与汇点编号
    vector<Edge> edges;     //边表 edges[e]和edges[e^1]互为反向弧
    vector<int> G[maxn];    //邻接表,G[i][j]表示结点i的第j条边在e数组中的序号
    bool vis[maxn];         //BFS使用,标记一个节点是否被遍历过
    int d[maxn];            //从起点到i点的距离
    int cur[maxn];          //当前弧下标

    void init(int n,int s,int t)
    {
        this->n=n,this->s=s,this->t=t;
        for(int i=0;i<=n;i++) G[i].clear();
        edges.clear();
    }

    void AddEdge(int from,int to,int cap)
    {
        edges.push_back( Edge(from,to,cap,0) );
        edges.push_back( Edge(to,from,0,0) );//这条是反向边
        m = edges.size();//总共边的数量
        G[from].push_back(m-2);//正向边在edges数组中的编号
        G[to].push_back(m-1);//反向边在edges数组中的编号
    }

    bool BFS()
    {
        memset(vis,0,sizeof(vis));
        queue<int> Q;//用来保存节点编号的
        Q.push(s);
        d[s]=0;
        vis[s]=true;
        while(!Q.empty())
        {
            int x=Q.front(); Q.pop();
            for(int i=0; i<G[x].size(); i++)//x所连的边
            {
                Edge& e=edges[G[x][i]];//取出所连的那条边
                if(!vis[e.to] && e.cap>e.flow)//如果还没有经过  且流量小于容量 还可以再通
                {
                    vis[e.to]=true;
                    d[e.to] = d[x]+1;
                    Q.push(e.to);
                }
            }
        }
        return vis[t];//表示能否到大t点  不能的话返回false
    }

    int DFS(int x,int a)
    {
        if(x==t || a==0)return a;//到大汇点或者流量为0时返回
        int flow=0,f;//flow用来记录从x到t的最小残量
        for(int& i=cur[x]; i<G[x].size(); i++)
        {
            Edge& e=edges[G[x][i]];
            if(d[x]+1==d[e.to] && (f=DFS( e.to,min(a,e.cap-e.flow) ) )>0 )
			//判断是否是可行边 并对其进行深搜 是否有结果
            {
                e.flow +=f;
                edges[G[x][i]^1].flow -=f;//与其对应的反向边流量减少  以便于后悔恢复
                flow += f;
                a -= f;
                if(a==0) break;
            }
        }
        return flow;
    }

    int Maxflow()
    {
        int flow=0;
        while(BFS())
        {
            memset(cur,0,sizeof(cur));
            flow += DFS(s,INF);
        }
        return flow;
    }
}DC;

int pre[maxn];
int dis[maxn][maxn];
int fid(int x)
{
	int r=x;
	while(pre[r]!=r)
		r=pre[r];
	int i=x,j;
	while(i!=r)
	{
		j=pre[i];
		pre[i]=r;
		i=j;
	}
	return r;
}
void join(int x,int y)
{
	int fx=fid(x),fy=fid(y);
	if(fx!=fy)
	{
		pre[fx]=fy;
	}
}
bool check(int n,int limit,int k)
{
	DC.init(800,0,780);
	for(int i=1;i<=n;i++)
		DC.AddEdge(0,i,limit);
	for(int i=1;i<=n;i++)
		for(int j=501;j<=500+n;j++)
	{
		if(dis[i][j])
			DC.AddEdge(i,j,1);
		else
			DC.AddEdge(i+250,j,1);
	}
	for(int j=500+1;j<=500+n;j++)
		DC.AddEdge(j,780,limit);
	for(int i=1;i<=n;i++)
		DC.AddEdge(i,i+250,k);
	if(DC.Maxflow()==limit*n)
		return true;
	return false;
}
int main()
{
	//0是源点 780是汇点
	//1-250是女连喜欢男生
	//251-500 女连不喜欢男生
	//501-750 男生
	int n,m,f,k;
	int t;
	int u,v;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d%d%d%d",&n,&m,&k,&f);
		memset(dis,0,sizeof dis);
		for(int i=1;i<=n;i++)pre[i]=i;
		for(int i=0;i<m;i++)
		{
			scanf("%d%d",&u,&v);
			dis[u][v+500]=1 ;
		}
		for(int i=0;i<f;i++)
		{
			scanf("%d%d",&u,&v);
			join(u,v);
		}
		for(int i=1;i<=n;i++)
			for(int j=i+1;j<=n;j++)
			if(fid(i)==fid(j))
			{
				for(int k=501;k<=500+n;k++)
				{
					dis[i][k]=dis[j][k]=(dis[i][k]||dis[j][k]);
				}
			}
		int l=0,r=250;
        int ans;
        while(l<=r)
        {
            int mid=(l+r)/2;
            if(check(n,mid,k))
            {
                ans=mid;
                l=mid+1;
            }
            else
            {
                r=mid-1;
            }
        }
        printf("%d\n",ans);
        
	}
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值