牛客网暑期ACM多校训练营(第一场) A Monotonic Matrix(Lindström–Gessel–Viennot lemma)

题目链接:传送门

题目大意:一个n*m的矩阵,每个格子可以填充0,1,2。

但是:* Ai, j ∈ {0, 1, 2} for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.
* Ai, j ≤ Ai + 1, j for all 1 ≤ i < n, 1 ≤ j ≤ m.
* Ai, j ≤ Ai, j + 1 for all 1 ≤ i ≤ n, 1 ≤ j < m.

问,有多少种填法?

题目思路:

考虑 01 和 12 的分界线
是 (n, 0) 到 (0, m) 的两条不相交(可重合)路径
平移其中一条变成 (n-1, -1) 到 (-1, m-1)
变成起点 (n, 0) 和 (n-1, -1),终点 (0, m) 和 (-1, m-1) 的严格不相交路径,套 Lindström–Gessel–Viennot lemma
答案是

具体原理如下:

代码:

#include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
const int N = 1005;
int dp[N][N];
void update(int& x, int a)
{
    x += a;
    if (x >= MOD) {
        x -= MOD;
    }
}
int sqr(int x)
{
    return 1LL * x * x % MOD;
}
int main()
{
    dp[0][0] = 1;
    for (int i = 0; i < N; ++ i) {
        for (int j = 0; j < N; ++ j) {
            if (i) {
                update(dp[i][j], dp[i - 1][j]);
            }
            if (j) {
                update(dp[i][j], dp[i][j - 1]);
            }
        }
    }
    int n, m;
    while (scanf("%d%d", &n, &m) == 2) {
        printf("%d\n", static_cast<int>((sqr(dp[n][m]) + MOD - 1LL * dp[n - 1][m + 1] * dp[n + 1][m - 1] % MOD) % MOD));
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值