题目链接:传送门
题目大意:一个n*m的矩阵,每个格子可以填充0,1,2。
但是:* Ai, j ∈ {0, 1, 2} for all 1 ≤ i ≤ n, 1 ≤ j ≤ m.
* Ai, j ≤ Ai + 1, j for all 1 ≤ i < n, 1 ≤ j ≤ m.
* Ai, j ≤ Ai, j + 1 for all 1 ≤ i ≤ n, 1 ≤ j < m.
问,有多少种填法?
题目思路:
考虑 01 和 12 的分界线
是 (n, 0) 到 (0, m) 的两条不相交(可重合)路径
平移其中一条变成 (n-1, -1) 到 (-1, m-1)
变成起点 (n, 0) 和 (n-1, -1),终点 (0, m) 和 (-1, m-1) 的严格不相交路径,套 Lindström–Gessel–Viennot lemma
答案是
具体原理如下:
代码:
#include <bits/stdc++.h>
using namespace std;
const int MOD = 1e9 + 7;
const int N = 1005;
int dp[N][N];
void update(int& x, int a)
{
x += a;
if (x >= MOD) {
x -= MOD;
}
}
int sqr(int x)
{
return 1LL * x * x % MOD;
}
int main()
{
dp[0][0] = 1;
for (int i = 0; i < N; ++ i) {
for (int j = 0; j < N; ++ j) {
if (i) {
update(dp[i][j], dp[i - 1][j]);
}
if (j) {
update(dp[i][j], dp[i][j - 1]);
}
}
}
int n, m;
while (scanf("%d%d", &n, &m) == 2) {
printf("%d\n", static_cast<int>((sqr(dp[n][m]) + MOD - 1LL * dp[n - 1][m + 1] * dp[n + 1][m - 1] % MOD) % MOD));
}
}