回文子串
力扣连接:647. 回文子串(中等)
1.方法
-
确定dp数组以及下标的含义
dp数组是要定义成一位二维dp数组。
布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。 -
确定递推公式
在确定递推公式时,就要分析如下几种情况。
整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。(不用考虑)
当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况
- 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
- 情况二:下标i 与 j相差为1,例如aa,也是回文子串(情况一和二可以合并)
- 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是否回文就看dp[i + 1][j - 1]是否为true。
图解步骤
关键点:
- 遍历顺序可有有点讲究,看递推的方向,此题是从下往上,从左往右。
代码
class Solution {
public int countSubstrings(String s) {
int len = s.length();
boolean[][] dp = new boolean[len][len];
int result = 0;
for(int i=len-1;i>=0;i--){
for(int j=i;j<len;j++){
if(s.charAt(i)==s.charAt(j)){
if(j-i<=1){
dp[i][j] = true;
}else{
dp[i][j] = dp[i+1][j-1];
}
if(dp[i][j]){result++;}
}
}
}
return result;
}
}
最长回文子序列
力扣连接:516. 最长回文子序列(中等)
1.方法
- 确定递推公式
在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。
如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;
如果s[i]与s[j]不相同,那么dp[i][j] = max( dp[ i + 1 ][j] , dp[i][ j - 1 ] );
图解步骤
关键点:
- 初始化时,i==j的全部要初始化为1,即有1的长度。
代码
class Solution {
public int longestPalindromeSubseq(String s) {
int len = s.length();
int[][] dp = new int[len][len];
for(int i=0;i<len;i++){dp[i][i] = 1;}
for(int i=len-1;i>=0;i--){
for(int j=i+1;j<len;j++){
if(s.charAt(i)==s.charAt(j)){
dp[i][j] = dp[i+1][j-1] + 2;
}else{
dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
}
}
}
return dp[0][len-1];
}
}