【6.14 代随_57day】 回文子串、最长回文子序列

文章介绍了如何使用动态规划解决编程问题中的回文子串和最长回文子序列。对于回文子串,通过二维布尔数组dp判断子串是否为回文,从下往上、从左往右遍历更新状态。对于最长回文子序列,关注字符是否相同,更新dp数组并取最大值。
摘要由CSDN通过智能技术生成


回文子串

力扣连接:647. 回文子串(中等)

1.方法

  1. 确定dp数组以及下标的含义
    dp数组是要定义成一位二维dp数组
    布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

  2. 确定递推公式
    在确定递推公式时,就要分析如下几种情况。
    整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。(不用考虑)
s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是回文子串(情况一和二可以合并)
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是否回文就看dp[i + 1][j - 1]是否为true。

图解步骤

在这里插入图片描述

关键点

  • 遍历顺序可有有点讲究,看递推的方向,此题是从下往上,从左往右
    在这里插入图片描述

代码

class Solution {
    public int countSubstrings(String s) {
        int len = s.length();
        boolean[][] dp = new boolean[len][len];
        int result = 0;

        for(int i=len-1;i>=0;i--){
            for(int j=i;j<len;j++){
                if(s.charAt(i)==s.charAt(j)){
                    if(j-i<=1){
                        dp[i][j] = true;
                    }else{
                        dp[i][j] = dp[i+1][j-1];
                    }

                    if(dp[i][j]){result++;}
                }
            }
        }

        return result;
    }
}


最长回文子序列

力扣连接:516. 最长回文子序列(中等)

1.方法

  1. 确定递推公式
    在判断回文子串的题目中,关键逻辑就是看s[i]与s[j]是否相同。

如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;
如果s[i]与s[j]不相同,那么dp[i][j] = max( dp[ i + 1 ][j] , dp[i][ j - 1 ] );

图解步骤

在这里插入图片描述
在这里插入图片描述

关键点

  • 初始化时,i==j的全部要初始化为1,即有1的长度。

代码

class Solution {
    public int longestPalindromeSubseq(String s) {
        int len = s.length();
        int[][] dp = new int[len][len];
        for(int i=0;i<len;i++){dp[i][i] = 1;}

        for(int i=len-1;i>=0;i--){
            for(int j=i+1;j<len;j++){
                if(s.charAt(i)==s.charAt(j)){
                    dp[i][j] = dp[i+1][j-1] + 2;
                }else{
                    dp[i][j] = Math.max(dp[i+1][j], dp[i][j-1]);
                }
            }
        }

        return dp[0][len-1];
    }
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值