题意
有n种颜色和L个不同的珠子
如果一种染色方案有k种颜色没用到,那么这个方案的代价就是
1k+1
1
k
+
1
现在要求所有染色方案的代价和
题解
感觉这题的套路比较巧妙。。
先说
O(nl)
O
(
n
l
)
的吧,虽然这个只可以拿到20分
另
g(n,l)
g
(
n
,
l
)
为用
n
n
种颜色给个珠子涂色,且每一种颜色都要用到的方案数
如果知道了这个,答案就很好求了
然后我们这个直接DP转移的话是
O(nl2)
O
(
n
l
2
)
的
然后我们考虑先求另外一个
h(n,l)
h
(
n
,
l
)
表示每一种颜色第一个是有顺序的,然后这个乘上一个
n!
n
!
就可以得到
g
g
了,DP是
O(nl)
O
(
n
l
)
的
然后满分做法。。这个的话,比较套路,但是我以前没有做过
做题太少了
考虑二项式
(1−1)k+1=1+∑ki=0(−1)i+1Ci+1k+1
(
1
−
1
)
k
+
1
=
1
+
∑
i
=
0
k
(
−
1
)
i
+
1
C
k
+
1
i
+
1
然后你把右边的式子的C展开,把
(k+1)!
(
k
+
1
)
!
化为
(k+1)∗k!
(
k
+
1
)
∗
k
!
然后把
(k+1)
(
k
+
1
)
提出来
然后化简一下,可以得到
1k+1=∑ki=0(−1)iCik1i+1
1
k
+
1
=
∑
i
=
0
k
(
−
1
)
i
C
k
i
1
i
+
1
然后你就发现,对于一个方案。他可以转化为枚举他没有用到的颜色的子集来计算答案
所以答案就是
ans=∑n−1i=0(−1)i∗Cin∗(n−i)l∗1i+1
a
n
s
=
∑
i
=
0
n
−
1
(
−
1
)
i
∗
C
n
i
∗
(
n
−
i
)
l
∗
1
i
+
1
然后
il
i
l
是可以线性筛的,因为质数个数是
n/logn
n
/
l
o
g
n
级别的,所以对于质数暴力算就是
O(n)
O
(
n
)
的,不影响复杂度
CODE:
(因为就是直接上公式,所以过了样例就没有关了)
#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstring>
using namespace std;
typedef long long LL;
const LL MOD=998244353;
const LL N=5000005;
LL n,l;
LL pow (LL x,LL y)
{
if (y==1) return x;
LL lalal=pow(x,y>>1);
lalal=lalal*lalal%MOD;
if (y&1) lalal=lalal*x%MOD;
return lalal;
}
bool ok[N];
LL pri[N],g[N],tot=0;
void prepare ()
{
memset(ok,true,sizeof(ok));
g[1]=1;
for (LL u=2;u<=n;u++)
{
if (ok[u]) {pri[++tot]=u;g[u]=pow(u,l);}
for (LL i=1;i<=tot;i++)
{
LL j=pri[i];
if (j*u>n) break;
ok[j*u]=false;
g[u*j]=g[u]*g[j]%MOD;
if (u%j==0) break;
}
}
}
LL JC[N],inv[N],inv1[N];
LL C (LL x,LL y){return JC[x]*inv1[y]%MOD*inv1[x-y]%MOD;}
int main()
{
scanf("%lld%lld",&n,&l);
prepare();
JC[0]=1;for (LL u=1;u<=n;u++) JC[u]=JC[u-1]*u%MOD;
inv[1]=1;for (LL u=2;u<=n;u++) inv[u]=(MOD-MOD/u)*inv[MOD%u]%MOD;
inv1[0]=1;for (LL u=1;u<=n;u++) inv1[u]=inv1[u-1]*inv[u]%MOD;
LL ans=0;
LL now=1;
for (LL u=0;u<n;u++)
{
ans=ans+now*C(n,u)*g[n-u]%MOD*inv[u+1]%MOD;
ans=(ans+MOD)%MOD;
now=-now;
}
printf("%lld\n",ans);
return 0;
}