莫比乌斯反演

P2522 [HAOI2011]Problem b
把一个问题容斥转化为四个子问题
就是求

ans=i=1..to..nj=1..to..m[gcd(i,j)==k] a n s = ∑ i = 1 . . t o . . n ​ ∑ j = 1.. t o . . m [ g c d ( i , j ) == k ]
的问题
转化为
ans=d=1..to..nf(d) a n s = ∑ d = 1 . . t o . . n f ( d )

又因为
f(i)=i|d(miu(d/i))F(d)=i|d(miu(d/i))[n/d][m/d] f ( i ) = ∑ i | d ( m i u ( d / i ) ) ​ F ( d ) = ∑ i | d ( m i u ( d / i ) ) ​ [ n / d ] ∗ [ m / d ]

ans=i=1..to..ni|d(miu(d/i))[n/d][m/d] a n s = ∑ i = 1 . . t o . . n ∑ i | d ( m i u ( d / i ) ) ​ [ n / d ] ∗ [ m / d ]

这里i=k;再转化为
i=1..[n/k]μ(i)[n/k/i][m/k/i] ∑ i = 1.. [ n / k ​ ] ​ μ ( i ) [ n / k / i ​ ​ ] [ m / k / i ​ ​ ]

预处理出∑ i (miu(i))​,再除法分块

#include<cstdio>
#include<iostream>
using namespace std;
const int N=1e5+9;
int ip[N],pr[N],tot,miu[N],pmiu[N];
void pre(){miu[1]=1;ip[1]=1;
    for(int i=2;i<=N;i++) {
        if(!ip[i])    pr[++tot]=i,miu[i]=-1;
        for(int j=1;j<=tot&&i*pr[j]<=N;j++){
            ip[pr[j]*i]=1;miu[pr[j]*i]=i%pr[j]?-miu[i]:0;
            if(i%pr[j]==0) break;
        }
    }
    for(int i=1;i<=N;i++)pmiu[i]=pmiu[i-1]+miu[i];
}int T,a,b,c,d,k,cnt;
int solve(int n,int m){
    n/=k,m/=k;int ans=0;
    if(n>m) std::swap(n,m);
    for(int i=1,j;i<=n;i=j+1){
        j=min(n/(n/i),m/(m/i));
        ans+=(pmiu[j]-pmiu[i-1])*(n/i)*(m/i);
    }
    return ans;
}

int main(){pre();scanf("%d",&T);
    while(T--){scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        //b/=k,d/=k;a/=k,c/=k;
        printf("%d\n",solve(a-1,c-1)+solve(b,d)-solve(a-1,d)-solve(c-1,b));
    }

} 

P2257 YY的GCD
就是求

ans=i=1..to..nj=1..to..m[gcd(i,j)==k] a n s = ∑ i = 1 . . t o . . n ​ ∑ j = 1.. t o . . m [ g c d ( i , j ) == k ]
的问题
转化为
ans=df(d)(d) a n s = ∑ d f ( d ) ( d 为 质 数 )

又因为
f(i)=i|d(miu(d/i))F(d)=i|d(miu(d/i))[n/d][m/d] f ( i ) = ∑ i | d ( m i u ( d / i ) ) ​ F ( d ) = ∑ i | d ( m i u ( d / i ) ) ​ [ n / d ] ∗ [ m / d ]

ans=ii|d(miu(d/i))[n/d][m/d]=id1..n/i(miu(d))[n/d/i][m/d/i] a n s = ∑ i ∑ i | d ( m i u ( d / i ) ) ​ [ n / d ] ∗ [ m / d ] = ∑ i ∑ d 1.. n / i ( m i u ( d ) ) ​ [ n / d / i ] ∗ [ m / d / i ]

令T=d*i
ans=T1...ni|T(miu(T/i))[n/T][m/T] a n s = ∑ T 1... n ∑ i | T ( m i u ( T / i ) ) ​ [ n / T ] ∗ [ m / T ]

预处理这东西∑ i|T (miu(T/i)),枚举质数来筛倍数​

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<cstdio>
#include<iostream>
using namespace std;
const int N=1e7+9;
int ip[N],pr[N],tot,miu[N],g[N];
void pre(){miu[1]=1;ip[1]=1;
    for(int i=2;i<=N;i++) {
        if(!ip[i])    pr[++tot]=i,miu[i]=-1;
        for(int j=1;j<=tot&&i*pr[j]<=N;j++){
            ip[pr[j]*i]=1;miu[pr[j]*i]=i%pr[j]?-miu[i]:0;
            if(i%pr[j]==0) break;
        }
    }
    for(int i=1;i<=tot;i++)for(int j=1;j*pr[i]<=N;j++) 
    g[j*pr[i]]+=miu[j];
    for(int i=1;i<=N;i++)g[i]+=g[i-1];
}int T,a,b;
long long solve(int n,int m){
    long long ans=0;
    if(n>m) std::swap(n,m);
    for(int i=1,j;i<=n;i=j+1){
        j=min(n/(n/i),m/(m/i));
        ans+=1ll*(g[j]-g[i-1])*(n/i)*(m/i);
    }
    return ans;
}

int main(){pre();scanf("%d",&T);
    while(T--){scanf("%d%d",&a,&b);

        printf("%lld\n",solve(a,b));
    }

} 

P1390 公约数的和
可以用莫比乌斯反演,也可以不用。。。。
很好推,不退了

#include<cstdio>
#include<iostream>
using namespace std;
const long long N=2e6+9;
long long ip[N],pr[N],tot,miu[N],pmiu[N],g[N];
void pre(){miu[1]=1;ip[1]=1;
    for(long long i=2;i<=N;i++) {
        if(!ip[i])    pr[++tot]=i,miu[i]=-1;
        for(long long j=1;j<=tot&&i*pr[j]<=N;j++){
            ip[pr[j]*i]=1;miu[pr[j]*i]=i%pr[j]?-miu[i]:0;
            if(i%pr[j]==0) break;
        }
    }
    for(long long i=1;i<=N;i++) for(long long j=i;j<=N;j+=i) g[j]+=miu[j/i]*i;
    for(long long i=1;i<=N;i++)pmiu[i]=pmiu[i-1]+g[i];
}long long T,a,b,c,d,k,cnt;
long long solve(long long n){
    long long ans=0;
    for(long long i=1,j;i<=n;i=j+1){
        j=min(n/(n/i),n/(n/i));
        ans+=1ll*(pmiu[j]-pmiu[i-1])*(n/i)*(n/i);
    }
    return ans;
}

int main(){pre();T=1;
    while(T--){scanf("%lld",&a);
        printf("%lld\n",(solve(a)-1ll*a*(a+1)/2)/2);
    }

} 

P3312 [SDOI2014]数表
设f(x)为x的约数和,可以用枚举约数筛倍数的方法,也可以线性筛,因为这是个积性函数
然后求

ans=k=1..to..ni=1..to..nj=1..to..m[gcd(i,j)==k]f(k) a n s = ∑ k = 1.. t o . . n ∑ i = 1 . . t o . . n ​ ∑ j = 1.. t o . . m [ g c d ( i , j ) == k ] ∗ f ( k )

同理求出
ans=d=1..to..ni|d(miu(d/i))[n/d][m/d]f(d) a n s = ∑ d = 1.. t o . . n ∑ i | d ( m i u ( d / i ) ) [ n / d ] ∗ [ m / d ] ∗ f ( d )

ans=d=1..to..ni|d(miu(d/i))f(i)[n/d][m/d] a n s = ∑ d = 1.. t o . . n ∑ i | d ( m i u ( d / i ) ) ​ ∗ f ( i ) [ n / d ] ∗ [ m / d ]

预处理出 这东西∑ i |d (miu(d/i))​ *f(i)还使用枚举约数倍数筛
限制可以离线做,用树状数组或线段树维护带修改的前缀和

// luogu-judger-enable-o2
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e5+9;
int ip[N],pr[N],tot,miu[N],pmiu[N],f[N],ans[N],F[N],sum[N],id[N];
struct node{
    int a,b,c,id;
    bool operator <(node tmp)const{return a<tmp.a;}
}t[N];
void add(int x,int val){for(;x<=N;x+=x&-x) sum[x]+=val;}
int ask(int x){int ans=0; for(x;x>=1;x-=x&-x) ans+=sum[x];return ans;} 
void pre(){miu[1]=1;ip[1]=id[1]=1;
    for(int i=1;i<=N;i++) for(int j=i;j<=N;j+=i) f[j]+=i;
    for(int i=2;i<=N;i++) {id[i]=i;
        if(!ip[i])    pr[++tot]=i,miu[i]=-1;
        for(int j=1;j<=tot&&i*pr[j]<=N;j++){
            ip[pr[j]*i]=1;miu[pr[j]*i]=i%pr[j]?-miu[i]:0;
            if(i%pr[j]==0) break;
        }
    }
}int T,a,b,c,d,k,cnt;
int solve(int n,int m){
    int ans=0;
    if(n>m) std::swap(n,m);
    for(int i=1,j;i<=n;i=j+1){
        j=min(n/(n/i),m/(m/i));
        ans+=(ask(j)-ask(i-1))*(n/i)*(m/i);
    }
    return ans;
}
bool cmp(int x,int y){return f[x]<f[y];}
int main(){pre();scanf("%d",&T);
    for(int i=1;i<=T;i++)scanf("%d%d%d",&t[i].b,&t[i].c,&t[i].a),t[i].id=i;
    sort(t+1,t+T+1);sort(id+1,id+N+1,cmp);
    for(int q=1,j,i,k=1;q<=T;q++){
        for(;f[id[k]]<=t[q].a&&k<=N;k++)    for(i=id[k],j=i;j<=N;j+=i) add(j,f[i]*miu[j/i]);
        ans[t[q].id]=solve(t[q].b,t[q].c);if(ans[t[q].id]<0)ans[t[q].id]+=(1<<31);
    }
    for(int i=1;i<=T;i++)
    printf("%d\n",ans[i]);
} 

P1829 [国家集训队]Crash的数字表格
这个题没明白。。。
转载自https://www.cnblogs.com/ljh2000-jump/p/6358095.html

// luogu-judger-enable-o2
#include <iostream>
#include <cstdio>
using namespace std;
const int M=10000011;
const int MOD=20101009;
int n,m,cnt,ans;
int prime[M],S[M],f[M];
bool vis[M];
int main()
{
    scanf("%d%d",&n,&m); if(n>m) swap(n,m); long long now;f[1]=1;
    for(int i=2;i<=n;i++) {
        if(!vis[i]) { prime[++cnt]=i; f[i]=-i+1; }
        for(int j=1;j<=cnt && i*prime[j]<=n;j++) {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0) { f[i*prime[j]]=f[i]; break; }
            now=1ll*f[i]*f[prime[j]]; now%=MOD;
            f[i*prime[j]]=now;
        }
    }
    for(int i=1;i<=m;i++) S[i]=S[i-1]+i,S[i]%=MOD;
    for(int i=1;i<=n;i++) {
        now=1ll*S[n/i]*S[m/i]%MOD;
        (now*=f[i])%=MOD;
        now*=i; now%=MOD;
        ans=(ans+now)%MOD;
    }
    ans+=MOD; ans%=MOD;
    printf("%d",ans);
    return 0;
}

P3455 [POI2007]ZAP-Queries
比problem b简单
不用容斥了

// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include<cstdio>
#include<iostream>
const int N=1e6+9;
int ip[N],pr[N],tot,miu[N];
void pre(){miu[1]=1;
    for(int i=2;i<=N;i++) {
        if(!ip[i])  pr[++tot]=i,miu[i]=-1;
        for(int j=1;j<=tot&&i*pr[j]<=N;j++){
            ip[pr[j]*i]=1;miu[pr[j]*i]=i%pr[j]?-miu[i]:0;
            if(i%pr[j]==0) break;
        }
    }
    for(int i=1;i<=N;i++) miu[i]+=miu[i-1];
}
int T,a,b,c,d,k,cnt;long long ans;
int main(){pre();scanf("%d",&T);
    while(T--){scanf("%d%d%d",&b,&d,&k);ans=0;
        if(!k){ printf("0\n");continue;}b/=k,d/=k;
        if(b>d) std::swap(b,d);
        for(int i=1,j;i<=b;i=j+1){
            j=std::min(b/(b/i),d/(d/i));
            ans+=1ll*(miu[j]-miu[i-1])*(b/i)*(d/i);
        }
        printf("%lld\n",ans);
    }

} 
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值