Dataset.from_pandas 报错 pyarrow.lib.ArrowInvalid: (‘cannot mix struct and non-struct, non-null values


0. 报错

Dataset.from_pandas(df)时报错:

pyarrow.lib.ArrowInvalid: ('cannot mix struct and non-struct, non-null values', 'Conversion failed for column xxx with type object')

这个错误通常发生在将 Pandas DataFrame 转换为 Hugging Face Dataset 格式时,因为数据类型不匹配或某些列包含复杂数据结构(如嵌套列表或字典)

1. 检查数据类型

确保 prompt 列中的数据类型一致且符合要求。可以使用以下代码检查数据类型:

print(df.dtypes)

如果每一列的类型是 object,可能包含字符串或其他数据类型混合,需要进一步检查具体数据。

2. 数据清理

如果 object 类型中还嵌套list或者object,例如 pandas 其中一行数据为:

{
    "data": {
        "v1": {
            "k1": "v2",
            "k2": "v2"
        },
        "v2": [
            "v11",
            "v22"
        ]
    }
}

对于这种复杂的数据结构,Dataset.from_pandas(df) 会报错,建议转为 JSON 字符串,例如:

import json

df['c1'] = df['c1'].apply(lambda x: json.dumps(x) if isinstance(x, (dict, list)) else x)

3. 示例代码

以下是一个完整的示例,展示如何处理和转换数据:

import pandas as pd
import json
from datasets import Dataset, Features, Value

# 示例数据
data = {
    'c1': [
        {'text': '这是一个示例提示1', 'id': 1},
        {'text': '这是一个示例提示2', 'id': 2},
        '这是一个简单的字符串'
    ],
    'r1': ['回答1', '回答2', '回答3']
}

df = pd.DataFrame(data)

# 数据清理:将字典或列表转换为 JSON 字符串
df['c1'] = df['c1'].apply(lambda x: json.dumps(x) if isinstance(x, (dict, list)) else x)

# 定义 features
features = Features({
    'c1': Value('string'),
    'r1': Value('string')
})

# 转换为 Dataset
dataset = Dataset.from_pandas(df, features=features)

print(dataset)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

SmallerFL

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值