题意:
小Q的工作是采摘花园里的苹果。在花园中有n棵苹果树以及m条双向道路,苹果树编号依次为1到n,每条道路的两
端连接着两棵不同的苹果树。假设第i棵苹果树连接着
di
条道路。小Q将会按照以下方式去采摘苹果:
1.小Q随机移动到一棵苹果树下,移动到第i棵苹果树下的概率为
di2m
,但不在此采摘。
2.等概率随机选择一条与当前苹果树相连的一条道路,移动到另一棵苹果树下。
3.假设当前位于第i棵苹果树下,他会采摘
ai
个苹果,多次经过同一棵苹果树下会重复采摘。
4.重复第2和3步k次。
计算小Q期望摘到多少苹果。
题解:
如果想要通过一般的期望dp做,反正我不会。
所以换一个思路,计算在第i次到每棵树的概率。
先考虑第二次:
f[i]=∑<i,j>dj2m/dj=di2m
发现不变。
于是就很简单了。
code:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#define LL long long
using namespace std;
const LL mod=1000000007;
LL n,m,k;
LL a[100010],d[100010];
LL pow(LL a,LL b)
{
LL ans=1;
while(b)
{
if(b&1) ans=ans*a%mod;
a=a*a%mod;b>>=1;
}
return ans;
}
LL ans=0;
int main()
{
scanf("%lld %lld %lld",&n,&m,&k);
for(LL i=1;i<=n;i++) scanf("%lld",&a[i]);
for(LL i=1;i<=m;i++)
{
LL x,y;scanf("%lld %lld",&x,&y);
d[x]++;d[y]++;
}
for(LL i=1;i<=n;i++) ans=(ans+a[i]*d[i]%mod)%mod;
ans=ans*k%mod;
//printf("%lld %lld\n",ans,2*m);
printf("%lld",ans*pow(2*m,mod-2)%mod);
}