bzoj 5091: 摘苹果

题意:

小Q的工作是采摘花园里的苹果。在花园中有n棵苹果树以及m条双向道路,苹果树编号依次为1到n,每条道路的两
端连接着两棵不同的苹果树。假设第i棵苹果树连接着 di 条道路。小Q将会按照以下方式去采摘苹果:
1.小Q随机移动到一棵苹果树下,移动到第i棵苹果树下的概率为 di2m ,但不在此采摘。
2.等概率随机选择一条与当前苹果树相连的一条道路,移动到另一棵苹果树下。
3.假设当前位于第i棵苹果树下,他会采摘 ai 个苹果,多次经过同一棵苹果树下会重复采摘。
4.重复第2和3步k次。
计算小Q期望摘到多少苹果。

题解:

如果想要通过一般的期望dp做,反正我不会。
所以换一个思路,计算在第i次到每棵树的概率。
先考虑第二次:

f[i]=<i,j>dj2m/dj=di2m

发现不变。
于是就很简单了。
code:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#define LL long long
using namespace std;
const LL mod=1000000007;
LL n,m,k;
LL a[100010],d[100010];
LL pow(LL a,LL b)
{
    LL ans=1;
    while(b)
    {
        if(b&1) ans=ans*a%mod;
        a=a*a%mod;b>>=1;
    }
    return ans;
}
LL ans=0;
int main()
{
    scanf("%lld %lld %lld",&n,&m,&k);
    for(LL i=1;i<=n;i++) scanf("%lld",&a[i]);
    for(LL i=1;i<=m;i++)
    {
        LL x,y;scanf("%lld %lld",&x,&y);
        d[x]++;d[y]++;
    }
    for(LL i=1;i<=n;i++) ans=(ans+a[i]*d[i]%mod)%mod;
    ans=ans*k%mod;
    //printf("%lld %lld\n",ans,2*m);
    printf("%lld",ans*pow(2*m,mod-2)%mod);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值