51nod 1220 约数之和

题意:

求:

injnd(ij)

题解:

首先有这个东西: nm 的因子是 p|nq|mnpq[(p,q)=1]
所以要求

injnp|iq|jnpq[(p,q)=1]

然后上反演。
dnμ(d)dpndsum(npd)qndqndq

挺好推的不写过程了。
然后杜教筛 ndμ(d)d
code:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#define LL long long
const LL mod=1000000007;
using namespace std;
LL mu[1000010],prime[1000010],pr=0,n;
bool v[1000010];
LL Sum[100010];
void pre()
{
    mu[1]=1;memset(v,true,sizeof(v));
    for(LL i=2;i<=1000000;i++)
    {
        if(v[i]) prime[++pr]=i,mu[i]=-1;
        for(LL j=1;j<=pr&&i*prime[j]<=1000000;j++)
        {
            v[i*prime[j]]=false;
            if(i%prime[j]==0){mu[i*prime[j]]=0;break;}
            mu[i*prime[j]]=-mu[i];
        }
    }
    for(LL i=1;i<=1000000;i++) mu[i]=(mu[i-1]+mu[i]*i)%mod;
}
LL sum(LL x) {return x*(x+1)%mod*500000004%mod;}
LL solve(LL x)
{
    if(x<=1000000) return mu[x];
    if(Sum[n/x]!=0) return Sum[n/x];
    LL ans=1,j;
    for(LL i=2;i<=x;i=j+1)
    {
        j=x/(x/i);
        ans-=(sum(j)-sum(i-1))%mod*solve(x/i)%mod;
        ans%=mod;
    }
    Sum[n/x]=ans;
    return ans;
}
LL calcp(LL n)
{
    LL ans=0,j;
    for(LL i=1;i<=n;i=j+1)
    {
        j=n/(n/i);
        ans=(ans+(j-i+1)*sum(n/i)%mod)%mod;
    }
    return ans;
}
LL calcq(LL n)
{
    LL ans=0,j;
    for(LL i=1;i<=n;i=j+1)
    {
        j=n/(n/i);
        ans=(ans+(sum(j)-sum(i-1))%mod*(n/i)%mod)%mod;
    }
    return ans;
}
int main()
{
    pre();
    scanf("%lld",&n);
    LL ans=0,j;
    for(LL i=1;i<=n;i=j+1)
    {
        j=n/(n/i);
        ans=(ans+(solve(j)-solve(i-1))%mod*calcp(n/i)%mod*calcq(n/i)%mod)%mod;
    }
    printf("%lld",(ans+mod)%mod);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值