bzoj 3994: [SDOI2015]约数个数和

题意:求

nimjd(ij)

d(n)为n的约数个数。

题解:

首先要知道一个结论:

d(nm)=i|nij|nj[gcd(i,j)=1]

那么这个东西怎么证明呢
首先假设质数p在n中指数为k1,m中k2。
根据d函数的求法dn=ik(pi+1)
所以p对d(nm)的贡献为k1+k2+1
因为要gcd(i,j)=1所以p在i,j中指数可以是(k1,0),(k11,0)...(0,0)...(0,k2)
(k1+k2+1)种。
那所有符合条件的对数,根据乘法原理,就是ik(pi+1)
所以可以变成
nimjnimj[gcd(i,j)=1]

然后莫比乌斯反演搞搞就好了。
code:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#define LL long long
using namespace std;
int mu[50010],prime[50010],pr=0;
LL f[50010];
bool v[50010];
void pre()
{
    memset(v,true,sizeof(v));
    mu[1]=1;
    for(int i=2;i<=50000;i++)
    {
        if(v[i]) prime[++pr]=i,mu[i]=-1;
        for(int j=1;j<=pr&&i*prime[j]<=50000;j++)
        {
            v[i*prime[j]]=false;
            if(i%prime[j]==0){mu[i*prime[j]]=0;break;}
            mu[i*prime[j]]=-mu[i];
        }
    }
    for(int k=1;k<=50000;k++)
    {
        mu[k]+=mu[k-1];
        int pos;
        for(int i=1;i<=k;i=pos+1)
        {
            pos=k/(k/i);
            f[k]+=(LL)(pos-i+1)*(LL)(k/i);
        }
    }
}
int main()
{
    pre();
    int T;scanf("%d",&T);
    while(T--)
    {
        int n,m;scanf("%d %d",&n,&m);
        if(n>m) swap(n,m);
        LL ans=0,pos;
        for(int i=1;i<=n;i=pos+1)
        {
            pos=min(n/(n/i),m/(m/i));
            ans+=(LL)(mu[pos]-mu[i-1])*f[n/i]*f[m/i];
        }
        printf("%lld\n",ans);
    }
}
发布了398 篇原创文章 · 获赞 454 · 访问量 8万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 编程工作室 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览