题意:求
∑ni∑mjd(ij)
d(n)为n的约数个数。
题解:
首先要知道一个结论:
d(nm)=∑i|ni∑j|nj[gcd(i,j)=1]
那么这个东西怎么证明呢
首先假设质数p在n中指数为k1,m中k2。
根据d函数的求法 d(n)=∏ik(pi+1)
所以p对d(nm)的贡献为 (k1+k2+1)
因为要 gcd(i,j)=1 所以p在i,j中指数可以是 (k1,0),(k1−1,0)...(0,0)...(0,k2)
共 (k1+k2+1) 种。
那所有符合条件的对数,根据乘法原理,就是 ∏ik(pi+1)
所以可以变成
∑ni∑mj⌊ni⌋⌊mj⌋[gcd(i,j)=1]
然后莫比乌斯反演搞搞就好了。
code:
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<cmath>
#include<algorithm>
#define LL long long
using namespace std;
int mu[50010],prime[50010],pr=0;
LL f[50010];
bool v[50010];
void pre()
{
memset(v,true,sizeof(v));
mu[1]=1;
for(int i=2;i<=50000;i++)
{
if(v[i]) prime[++pr]=i,mu[i]=-1;
for(int j=1;j<=pr&&i*prime[j]<=50000;j++)
{
v[i*prime[j]]=false;
if(i%prime[j]==0){mu[i*prime[j]]=0;break;}
mu[i*prime[j]]=-mu[i];
}
}
for(int k=1;k<=50000;k++)
{
mu[k]+=mu[k-1];
int pos;
for(int i=1;i<=k;i=pos+1)
{
pos=k/(k/i);
f[k]+=(LL)(pos-i+1)*(LL)(k/i);
}
}
}
int main()
{
pre();
int T;scanf("%d",&T);
while(T--)
{
int n,m;scanf("%d %d",&n,&m);
if(n>m) swap(n,m);
LL ans=0,pos;
for(int i=1;i<=n;i=pos+1)
{
pos=min(n/(n/i),m/(m/i));
ans+=(LL)(mu[pos]-mu[i-1])*f[n/i]*f[m/i];
}
printf("%lld\n",ans);
}
}