4665: 小w的喜糖

题意:

求数字可重的错排。

题解:

考虑 2 n 2^n 2n容斥,枚举哪些位一样,就是 ∑ T ∈ S ( − 1 ) ∣ T ∣ ( n − ∣ T ∣ ) ! Π ( a i − b i ) ! \sum_{T \in S}(-1)^{|T|}\frac{(n-|T|)!}{\Pi(a_i-b_i)!} TS(1)TΠ(aibi)!(nT)!
其中 b i b_i bi为每种颜色已用个数。
考虑dp这个式子, f [ i ] [ j ] f[i][j] f[i][j]表示前i种颜色,用了j个,式子下面逆元积的和。
枚举每种颜色用多少即可。
code:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#define LL long long
using namespace std;
const LL mod=1e9+9;
LL fac[2010],inv[2010],n;
LL a[2010];
void pre()
{
	fac[0]=fac[1]=inv[0]=inv[1]=1;
	for(LL i=2;i<=2000;i++) inv[i]=(mod-mod/i)*inv[mod%i]%mod,fac[i]=fac[i-1]*i%mod;
	for(LL i=2;i<=2000;i++) inv[i]=inv[i-1]*inv[i]%mod;
}
LL f[2010],g[2010];
int C(int m,int n) {return fac[m]*inv[m-n]%mod*inv[n]%mod;}
int main()
{
	pre();
	scanf("%lld",&n);
	for(LL i=1;i<=n;i++)
	{
		LL c;scanf("%lld",&c);
		a[c]++;
	}
	f[0]=1;
	LL tot=0;
	for(LL i=1;i<=n;i++)
	{
		for(LL j=0;j<=tot;j++) g[j]=f[j],f[j]=0;
		for(LL j=0;j<=tot;j++)
			for(LL k=0;k<=a[i];k++)
				(f[j+k]+=g[j]*inv[a[i]-k]%mod*C(a[i],k)%mod)%=mod;
		tot+=a[i];
	}
	LL ans=0;
	for(LL i=0;i<=n;i++) (ans+=((i&1)?-1:1)*f[i]*fac[n-i]%mod)%=mod;
	printf("%lld",(ans+mod)%mod);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值