LeetCode10.正则表达式(困难)

本文介绍了一种正则表达式匹配算法,该算法能够处理包含'.', '*'等特殊字符的正则表达式,并提供了两种解决方案:回溯方法和动态规划方法。回溯方法直观但效率较低,而动态规划方法则利用了最优子结构特性,提高了算法效率。
摘要由CSDN通过智能技术生成

题目描述:
给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。

'.' 匹配任意单个字符
'*' 匹配零个或多个前面的那一个元素

所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。

说明:

s 可能为空,且只包含从 a-z 的小写字母。
p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 *。
示例 1:

输入:
s = "aa"
p = "a"
输出: false
解释: "a" 无法匹配 "aa" 整个字符串。

示例 2:

输入:
s = "aa"
p = "a*"
输出: true
解释: 因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。

示例 3:

输入:
s = "ab"
p = ".*"
输出: true
解释: ".*" 表示可匹配零个或多个('*')任意字符('.')。

示例 4:

输入:
s = "aab"
p = "c*a*b"
输出: true
解释: 因为 '*' 表示零个或多个,这里 'c' 为 0 个, 'a' 被重复一次。因此可以匹配字符串 "aab"。

示例 5:

输入:
s = "mississippi"
p = "mis*is*p*."
输出: false

方法 1:回溯
想法

如果没有星号(正则表达式中的 * ),问题会很简单——我们只需要从左到右检查匹配串 s 是否能匹配模式串 p 的每一个字符。

当模式串中有星号时,我们需要检查匹配串 s 中的不同后缀,以判断它们是否能匹配模式串剩余的部分。一个直观的解法就是用回溯的方法来体现这种关系。

class Solution {
    public boolean isMatch(String text, String pattern) {
        if (pattern.isEmpty()) return text.isEmpty();
        boolean first_match = (!text.isEmpty() &&
                               (pattern.charAt(0) == text.charAt(0) || pattern.charAt(0) == '.'));

        if (pattern.length() >= 2 && pattern.charAt(1) == '*'){
            return (isMatch(text, pattern.substring(2)) ||
                    (first_match && isMatch(text.substring(1), pattern)));
        } else {
            return first_match && isMatch(text.substring(1), pattern.substring(1));
        }
    }
}

方法 2: 动态规划
想法

因为题目拥有 最优子结构 ,一个自然的想法是将中间结果保存起来。我们通过用 \text{dp(i,j)}dp(i,j) 表示 \text{text[i:]}text[i:] 和 \text{pattern[j:]}pattern[j:] 是否能匹配。我们可以用更短的字符串匹配问题来表示原本的问题。

算法

我们用 [方法 1] 中同样的回溯方法,除此之外,因为函数 match(text[i:], pattern[j:]) 只会被调用一次,我们用 \text{dp(i, j)}dp(i, j) 来应对剩余相同参数的函数调用,这帮助我们节省了字符串建立操作所需要的时间,也让我们可以将中间结果进行保存。

自顶向下的方法

enum Result {
    TRUE, FALSE
}

class Solution {
    Result[][] memo;

    public boolean isMatch(String text, String pattern) {
        memo = new Result[text.length() + 1][pattern.length() + 1];
        return dp(0, 0, text, pattern);
    }

    public boolean dp(int i, int j, String text, String pattern) {
        if (memo[i][j] != null) {
            return memo[i][j] == Result.TRUE;
        }
        boolean ans;
        if (j == pattern.length()){
            ans = i == text.length();
        } else{
            boolean first_match = (i < text.length() &&
                                   (pattern.charAt(j) == text.charAt(i) ||
                                    pattern.charAt(j) == '.'));

            if (j + 1 < pattern.length() && pattern.charAt(j+1) == '*'){
                ans = (dp(i, j+2, text, pattern) ||
                       first_match && dp(i+1, j, text, pattern));
            } else {
                ans = first_match && dp(i+1, j+1, text, pattern);
            }
        }
        memo[i][j] = ans ? Result.TRUE : Result.FALSE;
        return ans;
    }
}

自底向上的方法

class Solution {
    public boolean isMatch(String text, String pattern) {
        boolean[][] dp = new boolean[text.length() + 1][pattern.length() + 1];
        dp[text.length()][pattern.length()] = true;

        for (int i = text.length(); i >= 0; i--){
            for (int j = pattern.length() - 1; j >= 0; j--){
                boolean first_match = (i < text.length() &&
                                       (pattern.charAt(j) == text.charAt(i) ||
                                        pattern.charAt(j) == '.'));
                if (j + 1 < pattern.length() && pattern.charAt(j+1) == '*'){
                    dp[i][j] = dp[i][j+2] || first_match && dp[i+1][j];
                } else {
                    dp[i][j] = first_match && dp[i+1][j+1];
                }
            }
        }
        return dp[0][0];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值