题目描述:
给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。
'.' 匹配任意单个字符
'*' 匹配零个或多个前面的那一个元素
所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。
说明:
s 可能为空,且只包含从 a-z 的小写字母。
p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 *。
示例 1:
输入:
s = "aa"
p = "a"
输出: false
解释: "a" 无法匹配 "aa" 整个字符串。
示例 2:
输入:
s = "aa"
p = "a*"
输出: true
解释: 因为 '*' 代表可以匹配零个或多个前面的那一个元素, 在这里前面的元素就是 'a'。因此,字符串 "aa" 可被视为 'a' 重复了一次。
示例 3:
输入:
s = "ab"
p = ".*"
输出: true
解释: ".*" 表示可匹配零个或多个('*')任意字符('.')。
示例 4:
输入:
s = "aab"
p = "c*a*b"
输出: true
解释: 因为 '*' 表示零个或多个,这里 'c' 为 0 个, 'a' 被重复一次。因此可以匹配字符串 "aab"。
示例 5:
输入:
s = "mississippi"
p = "mis*is*p*."
输出: false
方法 1:回溯
想法
如果没有星号(正则表达式中的 * ),问题会很简单——我们只需要从左到右检查匹配串 s 是否能匹配模式串 p 的每一个字符。
当模式串中有星号时,我们需要检查匹配串 s 中的不同后缀,以判断它们是否能匹配模式串剩余的部分。一个直观的解法就是用回溯的方法来体现这种关系。
class Solution {
public boolean isMatch(String text, String pattern) {
if (pattern.isEmpty()) return text.isEmpty();
boolean first_match = (!text.isEmpty() &&
(pattern.charAt(0) == text.charAt(0) || pattern.charAt(0) == '.'));
if (pattern.length() >= 2 && pattern.charAt(1) == '*'){
return (isMatch(text, pattern.substring(2)) ||
(first_match && isMatch(text.substring(1), pattern)));
} else {
return first_match && isMatch(text.substring(1), pattern.substring(1));
}
}
}
方法 2: 动态规划
想法
因为题目拥有 最优子结构 ,一个自然的想法是将中间结果保存起来。我们通过用 \text{dp(i,j)}dp(i,j) 表示 \text{text[i:]}text[i:] 和 \text{pattern[j:]}pattern[j:] 是否能匹配。我们可以用更短的字符串匹配问题来表示原本的问题。
算法
我们用 [方法 1] 中同样的回溯方法,除此之外,因为函数 match(text[i:], pattern[j:]) 只会被调用一次,我们用 \text{dp(i, j)}dp(i, j) 来应对剩余相同参数的函数调用,这帮助我们节省了字符串建立操作所需要的时间,也让我们可以将中间结果进行保存。
自顶向下的方法
enum Result {
TRUE, FALSE
}
class Solution {
Result[][] memo;
public boolean isMatch(String text, String pattern) {
memo = new Result[text.length() + 1][pattern.length() + 1];
return dp(0, 0, text, pattern);
}
public boolean dp(int i, int j, String text, String pattern) {
if (memo[i][j] != null) {
return memo[i][j] == Result.TRUE;
}
boolean ans;
if (j == pattern.length()){
ans = i == text.length();
} else{
boolean first_match = (i < text.length() &&
(pattern.charAt(j) == text.charAt(i) ||
pattern.charAt(j) == '.'));
if (j + 1 < pattern.length() && pattern.charAt(j+1) == '*'){
ans = (dp(i, j+2, text, pattern) ||
first_match && dp(i+1, j, text, pattern));
} else {
ans = first_match && dp(i+1, j+1, text, pattern);
}
}
memo[i][j] = ans ? Result.TRUE : Result.FALSE;
return ans;
}
}
自底向上的方法
class Solution {
public boolean isMatch(String text, String pattern) {
boolean[][] dp = new boolean[text.length() + 1][pattern.length() + 1];
dp[text.length()][pattern.length()] = true;
for (int i = text.length(); i >= 0; i--){
for (int j = pattern.length() - 1; j >= 0; j--){
boolean first_match = (i < text.length() &&
(pattern.charAt(j) == text.charAt(i) ||
pattern.charAt(j) == '.'));
if (j + 1 < pattern.length() && pattern.charAt(j+1) == '*'){
dp[i][j] = dp[i][j+2] || first_match && dp[i+1][j];
} else {
dp[i][j] = first_match && dp[i+1][j+1];
}
}
}
return dp[0][0];
}
}