LeetCode_32_最长的有效括号

题目描述:
给定一个只包含 ‘(’ 和 ‘)’ 的字符串,找出最长的包含有效括号的子串的长度。

示例 1:

输入: "(()"
输出: 2
解释: 最长
有效括号子串为 "()"

示例 2:

输入: ")()())"
输出: 4
解释: 最长有效括号子串为 "()()"

方法 1:暴力
算法

在这种方法中,我们考虑给定字符串中每种可能的非空偶数长度子字符串,检查它是否是一个有效括号字符串序列。为了检查有效性,我们使用栈的方法。

每当我们遇到一个 ‘(’,我们把它放在栈顶。对于遇到的每个 ‘)’,我们从栈中弹出一个 ‘(’,如果栈顶没有‘(’,或者遍历完整个子字符串后栈中仍然有元素,那么该子字符串是无效的。这种方法中,我们对每个偶数长度的子字符串都进行判断,并保存目前为止找到的最长的有效子字符串的长度。
代码(超时)

`public class Solution {
    public boolean isValid(String s) {
        Stack<Character> stack = new Stack<Character>();
        for (int i = 0; i < s.length(); i++) {
            if (s.charAt(i) == '(') {
                stack.push('(');
            } else if (!stack.empty() && stack.peek() == '(') {
                stack.pop();
            } else {
                return false;
            }
        }
        return stack.empty();
    }
    public int longestValidParentheses(String s) {
        int maxlen = 0;
        for (int i = 0; i < s.length(); i++) {
            for (int j = i + 2; j <= s.length(); j+=2) {
                if (isValid(s.substring(i, j))) {
                    maxlen = Math.max(maxlen, j - i);
                }
            }
        }
        return maxlen;
    }
}

方法 2:动态规划
算法

这个问题可以通过动态规划解决。我们定义一个 dp 数组,其中第 i 个元素表示以下标为 i 的字符结尾的最长有效子字符串的长度。我们将 dp 数组全部初始化为 0 。现在,很明显有效的子字符串一定以 ‘)’ 结尾。这进一步可以得出结论:以 ‘(’ 结尾的子字符串对应的 dp 数组位置上的值必定为 0 。所以说我们只需要更新‘)’ 在 dp 数组中对应位置的值。
代码

 public int longestValidParentheses(String s) {
        int maxans=0;
        int dp[] =new int[s.length()];
        for (int i=1;i<s.length();i++){
            if (s.charAt(i)==')'){
                if (s.charAt(i-1)=='('){
                    dp[i]=(i>=2?dp[i-2]:0)+2;
                }else if (i-dp[i-1]>0&&s.charAt(i-dp[i-1]-1)=='('){
                    dp[i] = dp[i - 1] + ((i - dp[i - 1]) >= 2 ? dp[i - dp[i - 1] - 2] : 0) + 2;
                }
                maxans=Math.max(maxans,dp[i]);
            }
        }
        return maxans;
    }

方法 3:栈
算法

与找到每个可能的子字符串后再判断它的有效性不同,我们可以用栈在遍历给定字符串的过程中去判断到目前为止扫描的子字符串的有效性,同时能的都最长有效字符串的长度。我们首先将 -1 放入栈顶。

对于遇到的每个 ‘(’ ,我们将它的下标放入栈中。
对于遇到的每个‘)’ ,我们弹出栈顶的元素并将当前元素的下标与弹出元素下标作差,得出当前有效括号字符串的长度。通过这种方法,我们继续计算有效子字符串的长度,并最终返回最长有效子字符串的长度。
代码

 public int longestValidParentheses(String s) {
        int maxans=0;
        Stack<Integer> stack=new Stack<>();
        stack.push(-1);
        for (int i=0;i<s.length();i++){
            if (s.charAt(i)=='('){
                stack.push(i);
            }else {
                stack.pop();
                if (stack.empty()){
                    stack.push(i);
                }else {
                    maxans=Math.max(maxans,i-stack.peek());
                }
            }
        }
        return maxans;
    }

方法 4:不需要额外的空间
算法

在这种方法中,我们利用两个计数器 left和 right 。首先,我们从左到右遍历字符串,对于遇到的每个 ‘(’,我们增加left 计算器,对于遇到的每个 ‘)’ ,我们增加 right 计数器。每当 left 计数器与 right 计数器相等时,我们计算当前有效字符串的长度,并且记录目前为止找到的最长子字符串。如果 right 计数器比 left 计数器大时,我们将 left 和 right 计数器同时变回 0 。

代码:

public class Solution {
    public int longestValidParentheses(String s) {
        int left = 0, right = 0, maxlength = 0;
        for (int i = 0; i < s.length(); i++) {
            if (s.charAt(i) == '(') {
                left++;
            } else {
                right++;
            }
            if (left == right) {
                maxlength = Math.max(maxlength, 2 * right);
            } else if (right >= left) {
                left = right = 0;
            }
        }
        left = right = 0;
        for (int i = s.length() - 1; i >= 0; i--) {
            if (s.charAt(i) == '(') {
                left++;
            } else {
                right++;
            }
            if (left == right) {
                maxlength = Math.max(maxlength, 2 * left);
            } else if (left >= right) {
                left = right = 0;
            }
        }
        return maxlength;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值