水很深的深度学习-Task01深度学习概述与数学基础

目录

         1.人工智能、机器学习与深度学习

1.1 人工智能、机器学习与深度学习

1.2 起源与发展

1.3 深度学习定义与分类

1.4 主要应用

2 数学基础

2.1 矩阵论

2.2 概率统计

2.3 信息论

2.4 最优化估计

3 总结


1 人工智能与机器学习

  • 人工智能分类:强人工智能、弱人工智能、超级人工智能
  • 机器学习分类:有监督学习、无监督学习、强化学习


人工智能,机器学习和深度学习的关系如下图所示:
在这里插入图片描述

1.2 起源与发展

  • 第1阶段:提出MP神经元模型、感知器、ADLINE神经网络,并指出感知器只能解决简单的线性分类任务,无法解决XOR简单分类问题
  • 第2阶段:提出Hopfiled神经网络、误差反向传播算法、CNN
  • 第3阶段:提出深度学习概念,在语音识别、图像识别的应用

1.3 深度学习定义与分类

  • 定义:采用多层网络结构对未知数据进行分类或回归
  • 分类:
    1. 有监督学习:深度前馈网络、卷积神经网络、循环神经网络等
    2. 无监督学习:深度信念网、深度玻尔兹曼机、深度自编码器等

1.4 主要应用

  • 图像处理领域:图像分类、物体检测、图像分割、图像回归
  • 语音识别领域:语音识别、声纹识别、语音合成
  • 自然语音处理领域:语言模型、情感分析、神经机器翻译、神经自动摘要、机器阅读理解、自然语言推理
  • 综合应用:图像描述、可视回答、图像生成、视频生成


2 深度学习数学基础

主要涵盖四个部分:矩阵论,概率统计,信息论,和最优化估计。

2.1 矩阵论

  • 张量:标量是0阶张量,矢量是1阶张量,矩阵是2阶张量,三维及以上数组称为张量
  • 矩阵的秩(Rank):矩阵向量中的极大线性无关组的数目
  • 矩阵的逆:
    1. 奇异矩阵:rank(A_{n×n})<nrank(An×n​)<n
    2. 非奇异矩阵:rank(A_{n×n})=nrank(An×n​)=n
  • 广义逆矩阵:如果存在矩阵BB使得ABA=AABA=A,则称BB为AA的广义逆矩阵
  • 矩阵分解:
    1. 特征分解:A = U\Sigma U^{T}A=UΣUT
    2. 奇异值分解:A = U \Sigma V^{T}A=UΣVT、U^T U = V^T V = IUTU=VTV=I

2.2 概率统计

  • 随机变量:

    1. 分类:离散随机变量、连续随机变量
    2. 概念:用概率分布来指定它的每个状态的可能性

常见的随机变量的概率分布如下:

离散型随机变量
在这里插入图片描述
连续型随机变量
在这里插入图片描述
多个变量时,概率分布会有不同

  • 条件概率
    在这里插入图片描述

  • 联合概率
    在这里插入图片描述

  • 先验概率

  • 后验概率

  • 全概率公式

  • 贝叶斯公式
    在这里插入图片描述

常用统计量为

  • 方差
    在这里插入图片描述

  • 协方差
    在这里插入图片描述

2.3 信息论

  • 熵:样本集纯度指标,或样本集报班的平均信息量

    H(X) = - \sum_{i = 1}^n P(x_i) \log_2 P(x_i)H(X)=−i=1∑n​P(xi​)log2​P(xi​)
  • 联合熵:度量二维随机变量XYXY的不确定性

    H(X, Y) = -\sum_{i = 1}^n \sum_{j = 1}^n P(x_i, y_j) \log_2 P(x_i, y_j)H(X,Y)=−i=1∑n​j=1∑n​P(xi​,yj​)log2​P(xi​,yj​)
  • 条件熵:

    \begin{aligned} H(Y|X) &= \sum_{i = 1}^n P(x_i) H(Y|X = x_i) \\ &= -\sum_{i = 1}^n P(x_i) \sum_{j = 1}^n P(y_j | x_i) \log_2 P(y_j | x_i) \\ &= -\sum_{i = 1}^n \sum_{j = 1}^n P(x_i, y_j) \log_2 P(y_j | x_i) \end{aligned}H(Y∣X)​=i=1∑n​P(xi​)H(Y∣X=xi​)=−i=1∑n​P(xi​)j=1∑n​P(yj​∣xi​)log2​P(yj​∣xi​)=−i=1∑n​j=1∑n​P(xi​,yj​)log2​P(yj​∣xi​)​
  • 互信息:

    I(X;Y) = H(X)+H(Y)-H(X,Y)I(X;Y)=H(X)+H(Y)−H(X,Y)
  • 相对熵:又称KL散度,描述两个概率分布PP和QQ差异,用概率分布QQ拟合真实分布PP时,产生的信息表达损耗

    1. 离散形式:\displaystyle D(P||Q) = \sum P(x)\log \frac{P(x)}{Q(x)}D(P∣∣Q)=∑P(x)logQ(x)P(x)​
    2. 连续形式:\displaystyle D(P||Q) = \int P(x)\log \frac{P(x)}{Q(x)}D(P∣∣Q)=∫P(x)logQ(x)P(x)​
  • 交叉熵:目标与预测值之间的差距

    \begin{aligned} D(P||Q) &= \sum P(x)\log \frac{P(x)}{Q(x)} \\ &= \sum P(x)\log P(x) - \sum P(x)\log Q(x) \\ &= -H(P(x)) -\sum P(x)\log Q(x) \end{aligned}D(P∣∣Q)​=∑P(x)logQ(x)P(x)​=∑P(x)logP(x)−∑P(x)logQ(x)=−H(P(x))−∑P(x)logQ(x)​

2.4 最优化估计

  • 最小二乘估计:采用最小化误差的平方和,用于回归问题。
  • 最小二乘估计又称最小平方法,是一种数学优化方法。它通过最小化误差的平方和寻找数据的最佳函数匹配。最小二乘法经常应用于回归问题,可以方便地求得未知参数,比如曲线拟合、最小化能量或者最大化熵等问题。

线性代数

  • 标量(scalar):一个标量就是一个单独的数。
  • 向量(vector):一个向量是一列数。
  • 矩阵(matrix):矩阵是一个二维数组,其中的每一个元素被两个索引所确定。
  • 张量(tensor):一个数组中的元素分布在若干维坐标的规则网络中,称之为张量。
  • 转置(transpose):矩阵的转置是以主对角线为轴的镜像。
  • 单位矩阵(identity matrix):所有沿主对角线的元素都是1,所有其他位置的元素都是0.
  • 对角矩阵(diagonal matrix):只在主对角线上含有非零元素,其他位置都是0。
  • 正交矩阵(orthogonal matrix):行向量和列向量分别标准正交的方阵。
  • 正定(positive definite):矩阵所有特征值都是正数。
  • 半正定(positive semidefinite):矩阵所有特征值都是非负数。
  • 负定(negative definite):矩阵所有特征值都是负数。
  • 半负定(negative semidefinite):矩阵所有特征值都是非正数。
  • 矩阵的秩(rank):矩阵列向量中的极大线性无关组的数目,记作矩阵的列秩,同样可以定义行秩。行秩=列秩=矩阵的秩,通常记作rank(A)。

参考资料:Unusual-Deep-Learning

深度学习概述和数学基础

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
知识图谱与多任务学习结合的度推荐是指在推荐系统中,利用知识图谱作为辅助信息来增强推荐效果。具体而言,通过将知识图谱嵌入任务与推荐任务联合训练,可以学习到项目与知识图谱中的实体之间的高级交互关系,从而改进推荐系统的性能。 一种代表性的方法叫做MKR(Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation)。MKR是一个层的端到端框架,它利用知识图谱嵌入任务来辅助推荐任务。在MKR中,使用交叉压缩单元来关联这两个任务,交叉压缩单元自动共享潜在特征,并学习推荐系统中的项目与知识图谱中的实体之间的交互。 通过在现实世界数据集上进行广泛实验,研究人员证明了MKR在电影、书籍、音乐和新闻推荐方面取得了可观的收益。即使在用户-物品交互稀疏的情况下,MKR仍能保持良好的性能。这表明知识图谱与多任务学习的结合可以有效地增强推荐系统的能力,并提升推荐结果的准确性和个性化程度。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [深度学习+知识图谱,一个不小心就顶流的话题](https://blog.csdn.net/hzbooks/article/details/121646436)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *3* [【论文翻译】用知识图谱的多任务特征学习来增强推荐](https://blog.csdn.net/xd963625627/article/details/104728132)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GoAI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值