👨💻作者简介: CSDN、阿里云人工智能领域博客专家,新星计划计算机视觉导师,百度飞桨PPDE,专注大数据与AI知识分享。✨公众号:GoAI的学习小屋 ,免费分享书籍、简历、导图等,更有交流群分享宝藏资料,关注公众号回复“加群”或➡️链接 加群。
🎉AI学习星球推荐: GoAI的学习社区 知识星球是一个致力于提供《机器学习 | 深度学习 | CV | NLP | 大模型 | 多模态 | AIGC 》各个最新AI方向综述、论文等成体系的学习资料,配有全面而有深度的专栏内容,包括不限于 前沿论文解读、资料共享、行业最新动态以、实践教程、求职相关(简历撰写技巧、面经资料与心得)多方面综合学习平台,强烈推荐AI小白及AI爱好者学习,性价比非常高!加入星球➡️点击链接
最全AI领域专栏 --《深入浅出AI》
💚专栏介绍:
简介:本专栏系列主要介绍各AI方向知识,详细介绍神经网络基础、原理相关知识内容,包含机器学习、深度学习等各系列教程及知识点总结,专项内容包括CV、NLP、大模型、多模态等方向,另外会总结自己学习过程中优秀的学习资料,配合相关思维导图,从入门到实战,实现理论与实践结合,可供A领域入门者与工作人员学习,目前收获浏览量88w+,专栏文章数110篇+, 目前专栏限时优惠,后期会按内容扩展进行涨价。
🌐专栏地址:链接
💜专栏优势
- 🎉CSDN深度学习文章排名top1,单篇文章收藏量超3000,专栏浏览量88w+。
- 👨💻作者长期深耕AI领域:CSDN、阿里AI领域博客专家,新星计划导师,百度飞桨PPDE,现某大厂算法工程师。
- 📝专栏内容丰富:包括不限于机器学习、深度学习、集成学习、Pytorch、CV、NLP、推荐、大模型等方向,理论与实战结合,非常适合AI领域兴趣者学习。
👏专栏文章试读:
📝专栏导图:
注:下方为深入浅出AI思维导图,导图文件可关注公众号:GoAI的学习小屋 回复 “AI导图” 获取。
0.前言知识-- 各类知识点总结
专栏的前言知识包括各类知识点总结,包括机器学习、深度学习、Python、数据分析、数学建模等基础知识,助力大家快速了解AI领域常见名词解释、算法原理、经典算法介绍与分类,部分涉及代码实战,广受CSDN用户好评,目前阅读量超越80w。
1.机器学习
本专栏系列主要介绍机器学习领域知识。详细介绍机器学习各类算法及处理流程,其中机器学习知识点总结单篇收藏600+,专栏收藏量21354,非常适合新手快速入门机器学习。
专栏地址 ➡️https://blog.csdn.net/qq_36816848/category_10846122.html
机器学习常见算法
集成学习
2.深度学习
本专栏系列主要介绍深度学习基础与原理,详细介绍神经网络基础、原理相关知识内容,资料集合包含机器学习、深度学习等各系列教程,从入门到实战,以计算机视觉及NLP资料为主,包括等,内容参考Github及网络资源,可供深度学习入门者与工作人员学习,深度学习系列CSDN单篇top1,专栏浏览量80w+,文章收藏量超3000.
深度学习系列最全资料总结
说明:本系列深度学习资料集合包含机器学习、深度学习等各系列教程,主要以计算机视觉资料为主,包括图像识别、分类、检测、分割等,内容参考Github及网络资源,仅供个人学习。侵权联系删除!
卷积神经网络
注意力机制
3.计算机视觉CV
本专栏主要介绍计算机视觉方向,内容不限于机器学习、深度学习、目标检测、OCR基础(不包含实战)、图像分割、图像分类、GAN等方向系列知识、原理、论文,并分享相关竞赛技巧、面试资料等珍贵资料,感兴趣的小伙伴可以关注下欢迎大家多多交流与指正。
注意:由于《计算机视觉》属于不同专栏,考虑到已订阅用户,因此本专栏文章不会含有导图内所有文章,介意请慎重订阅。
4.NLP方向
本专栏系列介绍NLP基础知识及相关下游任务(情感分析、意图识别、文本分类、信息抽取、命名实体识别、等),结合大模型技术进行详述,后续文章内容尽可能详细丰富,欢迎关注!
5.Pytorch
本专栏系列主要介绍Pytorch基础与实战,从环境安装到生态介绍,包括入门教程、实战笔记,其中Pytorch学习笔记系列汇总备受好评,分为不同章节,供初学者详细学习Pytorch框架入门深度学习。
6.深入浅出OCR
本专栏系列主要介绍计算机视觉OCR文字识别领域,是本人研究的领域之一。本系列每章将分别从OCR技术发展、方向、概念、算法、论文、数据集、对现有平台及未来发展方向等各种角度展开详细介绍,综合基础与实战知识。
注意:由于《深入浅出OCR》属于不同专栏,考虑到已订阅用户,因此本专栏文章不会含有导图内所有文章,介意请慎重订阅。
7.深入浅出推荐系统
本专栏主要介绍推荐系统算法及相关实战,总结自己学习过程中的笔记知识,包括召回、粗排、精排等各方向,主要介绍传统和深度学习推荐模型,并与多目标、多场景结合模型,后续将理论与实战相结合,可供对推荐方向感兴趣的同学学习。