样例有误 应该输出 0 1000000006
刚看到这个题,一脸懵逼。
打个表
观察一下
发现,除了做一次gcd时,如果做 t 次gcd,那么和最小的 a 和 b 分别是斐波那契数列的f[t+1]和f[t+2]。由于k很大,用矩阵快速幂即可。
而做一次就是 1 1(需要特判)
打表程序
#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
int gcd(int a,int b,int t)
{
if(a>b) swap(a,b);
if(a==0) return t;
return gcd(b%a,a,t+1);
}
int main()
{
int p=1;
while(p<=1000)
{
int f=0;
for(int i=1;i<=1000000;i++)
{
for(int j=1;j<=1000000;j++)
{
if(gcd(i,j,0)==p)
printf("%d %d 做%d次gcd\n",i,j,p),f=1;
if(f) break;
}
if(f==1) {p++;break;}
}
}
return 0;
}
题目代码
#include<iostream>
#include<cstdio>
#include<vector>
#define LL long long
#define MOD 1000000007
using namespace std;
LL A[3][3]={0,0,0,
0,0,1,
0,1,1,};
LL k,ans;
LL f[3][3],bak[3][3];
void Fast_Pow(LL p)
{
while(p)
{
if(p%2)
{
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
bak[i][j]=f[i][j],f[i][j]=0;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
(f[i][j]+=(bak[i][k]*A[k][j])%MOD)%=MOD;
}
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
bak[i][j]=A[i][j],A[i][j]=0;
for(int i=1;i<=2;i++)
for(int j=1;j<=2;j++)
for(int k=1;k<=2;k++)
(A[i][j]+=(bak[i][k]*bak[k][j])%MOD)%=MOD;
p/=2;
}
printf("%lld %lld\n",f[1][1],f[1][2]);
}
int main()
{
freopen("gcd.in","r",stdin);
freopen("gcd.out","w",stdout);
scanf("%lld",&k);
f[1][1]=1,f[1][2]=1;
if(k==1) printf("1 1\n");
else Fast_Pow(k);
return 0;
}
证明是这样的:
①如果有一步辗转相除 (a,b) → (b,a − k ∗ b),k > 1,一定
能找到更优的 (b + a mod b,b) (这是最优),即本题只考虑辗转相减
②如果一系列得到数对 (0,t),t > 1,一定对应一个结束在
(0,1)(这是最优) 的更优解