gcd题目

100 篇文章 0 订阅
5 篇文章 0 订阅

这里写图片描述
这里写图片描述
样例有误 应该输出 0 1000000006

刚看到这个题,一脸懵逼。

打个表

观察一下
这里写图片描述

发现,除了做一次gcd时,如果做 t 次gcd,那么和最小的 a 和 b 分别是斐波那契数列的f[t+1]和f[t+2]。由于k很大,用矩阵快速幂即可。
而做一次就是 1 1(需要特判)

打表程序

#include<iostream>
#include<cstdio>
#include<vector>
using namespace std;
int gcd(int a,int b,int t)
{
    if(a>b) swap(a,b);
    if(a==0) return t;
    return gcd(b%a,a,t+1);
}
int main()
{
    int p=1;
    while(p<=1000)
    {
        int f=0;
        for(int i=1;i<=1000000;i++)
        {
            for(int j=1;j<=1000000;j++)
            {
                if(gcd(i,j,0)==p)
                printf("%d %d 做%d次gcd\n",i,j,p),f=1;
                if(f) break;
            } 
            if(f==1) {p++;break;}
        }
    }
    return 0; 
}

题目代码

#include<iostream>
#include<cstdio>
#include<vector>
#define LL long long
#define MOD 1000000007
using namespace std;
LL A[3][3]={0,0,0,
             0,0,1,
             0,1,1,};
LL k,ans;
LL f[3][3],bak[3][3];
void Fast_Pow(LL p)
{
    while(p)
    {
        if(p%2) 
        {
            for(int i=1;i<=2;i++)
            for(int j=1;j<=2;j++)
            bak[i][j]=f[i][j],f[i][j]=0;

            for(int i=1;i<=2;i++)
            for(int j=1;j<=2;j++)
            for(int k=1;k<=2;k++)
            (f[i][j]+=(bak[i][k]*A[k][j])%MOD)%=MOD;
        }
        for(int i=1;i<=2;i++)
        for(int j=1;j<=2;j++)
        bak[i][j]=A[i][j],A[i][j]=0;

        for(int i=1;i<=2;i++)
        for(int j=1;j<=2;j++)
        for(int k=1;k<=2;k++)
        (A[i][j]+=(bak[i][k]*bak[k][j])%MOD)%=MOD;
        p/=2;
    }
    printf("%lld %lld\n",f[1][1],f[1][2]);
}
int main()
{
    freopen("gcd.in","r",stdin);
    freopen("gcd.out","w",stdout);
    scanf("%lld",&k);
    f[1][1]=1,f[1][2]=1;
    if(k==1) printf("1 1\n");
    else Fast_Pow(k);
    return 0;
}

证明是这样的:
①如果有一步辗转相除 (a,b) → (b,a − k ∗ b),k > 1,一定
能找到更优的 (b + a mod b,b) (这是最优),即本题只考虑辗转相减
②如果一系列得到数对 (0,t),t > 1,一定对应一个结束在
(0,1)(这是最优) 的更优解

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值