Redis 入门
问题现象
- 海量用户
- 高并发
罪魁祸首—关系型数据库
- 性能瓶颈:磁盘IO性能低下
- 扩展瓶颈:数据关系复杂,扩展性差,不便于大规模集群
解决思路 — Nosql
- 降低磁盘IO次数,越低越好 — 内存存储
- 去除数据间关系,越简单越好 — 不存储关系,仅存储数据
解决方案(电商场景)
- 商品基本信息 — MySQL
- 名称
- 价格
- 厂商
- 商品附加信息 — MongoDB
- 描述
- 详情
- 评论
- 图片信息 — 分布式文件系统
- 搜索关键字 — ES、Lucene。solr
- 热点信息 — Redis、memcache、tair
- 高频
- 波段性
Nosql
Nosql: 即Not-Only SQL(泛指非关系型数据库),作为关系型数据库的补充。
作用:应对基于海量用户和海量数据前提下的数据处理问题。
特征:
- 可扩容,可伸缩
- 大数据量下高性能
- 灵活的数据模型
- 高可用
常见Nosql数据库
- Redis
- memcache
- HBase
- MongoDB
Redis简介
概念:Redis(REmote DIctionary Server)是用C语言开发的一个开源的高性能键值对(key-value)数据库。
特征:
- 数据间没有必然的关联关系
- 内部采用单线程机制进行工作
- 高性能。官方提供测试数据,50个并发执行100000个请求,读的速度是110000次/s,写的速度是81000次/s.
- 多数据类型支持
- 字符串类型 string
- 列表类型 list
- 集合类型 hash
- 集合类型 set
- 有序集合类型 sorted_set
- 持久化支持。可以进行数据灾难恢复。
Redis的应用
- 为热点数据加速查询(主要场景),如热点商品、热点新闻、热点资讯、推广类等高访问量信息等
- 任务队列,如秒杀、抢购、购票排队等
- 即时信息查询,如各位排行榜、各类网站访问统计、公交到站信息、在线人数信息(聊天室、网站)、设备信号等
- 时效性信息控制,如验证码控制、投票控制等
- 分布式数据共享,如分布式集群架构中的session分离
- 消息队列
- 分布式锁
命令行模式工具使用思考
- 功能性命令
- 清除屏幕信息
- 帮助信息查阅
- 退出指令
信息添加
- 功能:设置key,value数据
- 命令
信息查询
- 功能:根据key查询对应的value,如果不存在,返回空(nil)
- 命令
清除屏幕信息
- 功能:清除屏幕中的信息
- 命令
帮助
- 功能:获取命令帮助文档,获取组中所有命令信息名称
- 命令
退出客户端命令行模式
- 功能:退出客户端
- 命令
Redis 数据类型
数据存储类型介绍
业务数据的特殊性
作为缓存使用
- 原始业务功能设计
- 秒杀
- 618活动
- 双11活动
- 排队购票
- 运营平台监控到的突发高频访问数据
- 突发时政要闻,被强势关注围观
- 高频、复杂的统计数据
- 在线人数
- 投票排行榜
附加功能
系统功能优化或升级
- 单服务器升级集群
- session 管理
- Token 管理
string
Redis 存储数据类型(5种常用)
- string String
- hash HashMap
- list LinkedList
- set HashSet
- sorted_set TreeSet
Redis 存储数据格式
- Redis 自身是一个Map,其中所有的数据都是采用key:value的形式存储
- 数据类型指的是存储的数据的类型,也就是value部分的类型,key部分永远都是字符串。
string 类型
- 存储的数据:单个数据,最简单的数据存储类型,也是最常用的数据存储类型
- 存储数据的格式:一个存储空间保存一个数据
- 存储内容:通常使用字符串,如果字符串以整数形式展示,可以作为数字操作使用
string 类型数据的基本操作
- 添加/修改数据
- 获取数据
- 删除数据
- 添加/修改多个数据
- 获取多个数据
- 获取数据字符个数(字符串长度)
- 追加信息到原始信息后部(如果原始信息存在就追加,否则新建)
string 类型数据的扩展操作
业务场景
大型企业级应用中,分表操作是基本操作,使用多张表存储同类型数据,但是对应的主键id必须保证统一性,不能重复。oracle数据库具有sequence设定,可以解决该问题,但是MYSQL数据库并不具有类似的机制,那么如何解决?
解决方案
-
设置数值数据增加指定范围的值
-
设置数值数据减少指定范围的值
string 作为数值操作
- string 在redis 内部存储默认就是一个字符串,当遇到增减类操作incr,decr时会转成数值型进行计算。
- redis所有的操作都是原子性的,采用单线程处理所有业务,命令是一个一个执行的,因此无需考虑并发带来的数据影响。
- 注意:按数值进行操作的数据,如果原始数据不能转成数值,或超越了redis数值上限范围,将报错。
Tips 1:
- redis用于控制数据库表主键id,为数据库表主键提供生成策略,保障数据库表的主键唯一性
- 此方案适用于所有数据库,且支持数据库集群
业务场景
某节目海选投票,只能通过微信投票,每个微信号每4小时只能投一票
电商商家开启热门商品推荐,热门商品不能一直处于热门期,每种热门期维持3天,3天后取消热门。
新闻网站会出现热点新闻,热点新闻最大的特征是时效性,如何自动控制热点新闻的时效性
解决方案
- 设置数据具有指定的生命周期
Tips 2:
- Redis 控制数据的生命周期,通过数据是否失效控制业务行为,适用于所有具有时效性限定控制的操作
string 类型数据操作的注意事项
-
数据操作不成功的反馈与数据正常操作之间的差异
(1)表示运行结果是否成功
- (integer)0 -> false 失败
- (integer)1 -> true 成功
(2)表示运行结果值
- (integer)3 -> 3 3个
- (integer)1 -> 1 1个
-
数据未获取到
(nil)等同于null -
数据最大存储量
512MB -
数值计算最大范围(java中long的最大值)
9223372036854775807
string 类型应用场景
业务场景
- 主页高频访问信息显示控制,例如新浪微博大V主页显示粉丝数与微博数量。
解决方案
- 在redis中为大V用户设定用户信息,以用户主键和属性值作为key,后台设定定时刷新策略即可
- 在redis中以json格式存储大V用户信息,定时刷新(也可以使用hash类型)
Tips 3:
- redis应用于各种结构型和非结构型高热度数据访问加速
key 的设置约定
- 数据库中的热点数据key命名惯例
hash
hash类型
存储的困惑
- 对象类数据的存储如果具有较频繁的更新需求操作会显得笨重
- 新的存储需求:对一系列存储的数据进行编组方便管理,典型应用存储对象信息
- 需要的存储结构:一个存储空间保存多个键值对数据
- hash类型:底层使用哈希表结构实现数据存储
hash 类型数据的基本操作
- 添加/修改数据
- 获取数据
- 删除数据
- 添加/修改多个数据
- 获取多个数据
- 获取哈希表中字段的数量
- 获取哈希表中是否存在指定的字段
hash 类型数据的扩展操作
- 获取哈希表中所有的字段名或字段值
- 设置指定字段的数值数据增加指定范围的值
hash 类型数据操作的注意事项
- hash类型下的value只能存储字符串,不允许存储其他数据类型,不存在嵌套现象。如果数据未获取到,对应的值为(nil)
- 每个hash可以存储223-1个键值对
- hash类型十分贴近对象的数据存储形式,并且可以灵活添加删除对象属性。但hash设计初衷不是为了存储大量对象而设计的,切记不可滥用,更不可以将hash作为对象列表使用。
- hgetall操作可以获取全部属性,如果内部field过多,遍历整体数据效率就会很低,有可能成为数据访问瓶颈。
hash 类型应用场景
业务场景
电商网站购物车设计与实现
业务分析
解决方案
以客户id为key,每位客户创建一个hash存储结构存储对应的购物车信息
将商品编号作为field,购买数量作为value进行存储
添加商品:追加全新的field与value
浏览:遍历hash
更改数量:自增/自减,设置value值
删除商品:删除field
清空:删除key
- 当前设计是否加速了购物差的呈现
当前仅仅是将数据存存储到了redis中,并没有起到加速的作用,商品信息还需要二次查询数据库- 每条购物车中的商品记录保存成2条field
- field1 专用于保存购买数量
命名格式: 商品id:nums
保存数据:数值 - field2 专用于保障购物车中显示的信息,包含文字描述,图片地址,所属商家信息等
命名格式:商品id:info
保存数据:json
注:如果没有则添加,有则不添加
Tips 4:
- redis 应用于购物车数据存储设计
业务场景
解决方案
- 以商家id作为key
- 将参与抢购的商品id作为field
- 将参与抢购的商品数量作为对应的value
- 抢购时使用降值的方式控制产品数量
- 实际业务中还有超卖等实际问题,这里不做讨论
Tips 5:
- redis 应用于抢购、限购类。限量发放优惠券、激活码等业务的数据存储设计
业务场景
string 存储对象(json)与hash存储对象
- string 存储用于多读取少更新的数据
- hash 用于多更新的数据
list
list类型
- 数据存储需求:存储多个数据,并对数据进入存储空间的顺序进行区分
- 需要的存储结构:一个存储空间保存多个数据,且通过数据可以体现进入顺序
- list类型:保存多个数据,底层使用双向链表存储结构实现
list类型数据基本操作
-
添加/修改数据
-
获取数据
-
获取并移除数据
list类型数据扩展操作
- 规定时间内获取并移除数据
- 移除指定数据
Tips 6:
- redis 应用于具有操作先后的数据控制
list类型数据操作注意事项
- list中保存的数据都是string类型的,数据总容量是有限的,最多232-1个元素(4294967295)。
- list具有索引的概念,但是操作数据时通常以队列的形式进行入队出队操作,或以找的形式进行入栈出栈操作
- 获取全部数据操作结束索引设置为-1
- list可以对数据进行分页操作,通常第一页的信息来自于list,第二页及更多的信息通过数据库的形式加载。
list类型应用场景
业务场景
twitter、新浪微博、微博腾讯中个人用户的关注列表需要按照用户的关注顺序进行展示,粉丝列表需要将最近关注的粉丝列在前面
解决方案
- 依赖list的数据具有顺序的特征对信息进行管理
- 使用队列模型解决多路信息汇总合并的问题
- 使用栈模型解决最新消息的问题
Tips 7:
- redis应用于最新消息展示
set
set 类型
- 新的存储需求:存储大量的数据,在查询方面提供更高的效率
- 需要的存储结构:能够保存大量的数据,高效的内部存储机制,便与查询
- set 类型:与hash存储结构完全相同,仅存储键,不存储值(nil),并且值是不允许重复的
set 类型的基本操作
-
添加数据
-
获取全部数据
-
删除数据
-
获取集合数据总量
-
判断集合中是否包含指定数据
set 类型的扩展操作
业务场景
每位用户首次使用今日头条时会设置3项爱好的内容,但是后期为了增加用户的活跃度、兴趣点,必须让用户对其他信息类别逐渐产生兴趣,增加客户留存度,如何实现?
业务分析
- 系统分析出各个分类的最新或最热点信息条目并组织成set集合
- 随机挑选其中部分信息
- 配合用户关注信息分类中的热点信息组织成展示的全信息集合
解决方案
-
随机获取集合中指定数量的数据
-
随机获取集合中的某个数据并将该数据移出集合
Tips 8:
- redis 应用于随机推荐类信息检索,例如热点歌单推荐,热卖旅游路线,应用app推荐,大V推荐等
业务场景
脉脉为了促进用户间的交流,保障业务成单率的提升,需要让每位用户拥有大量的好友,事实上职场新人不具有更多的职场好友,如何快速为用户积累更多的好友?
新浪微博为了增加用户热度,提高用户留存性,需要微博用户在关注更多的人,以此获得更多的信息或热门话题,如何提高用户关注他人的总量?
解决方案
- 求两个集合的交、并、差集
- 求两个集合的交、并、差集并存储在指定的集合中
- 将指定数据从原始集合中移到目标集合中
Tips 9:
- redis 应用于同类信息的关联搜索,二度关联搜索,深度关联搜索
- 显示共同关注(一度)
- 显示共同好友(一度)
- 由用户A出发,获取到好友用户B的好友信息列表(一度)
- 由用户A出发,获取到好友用户B的购物清单列表(二度)
- 由用户A出发,获取到好友用户B的游戏充值列表(二度)
set 类型数据操作的注意事项
- set 类型不允许数据重复,如果添加的数据在set中已经存在,将只保留一份
- set 虽然与hash的存储结构相同,但是无法启用hash中储值的空间
set 类型应用场景
业务场景
解决方案
- 依赖set集合数据不重复的特征,依赖set集合hash存储结构特征完成数据过滤与快速查询
- 根据用户ID获取用户所有角色
- 根据用户所有角色获取用户所有操作权限放入set集合
- 根据用户所有角色获取用户所有数据权限放入set集合
- 校验工作:redis提供基础数据还是提供校验结果?
Tips 10:
- redis 应用于同类型不重复数据的合并操作
业务场景
解决方案
- 利用set集合的数据去重特征,记录各种访问数据
- 建立string类型数据,利用incr统计日访问量(PV)
- 建立set模型,记录不同cookie数量
- 建立set模型,记录不同IP数量
Tips 11:
- redis应用于同类型数据的快速去重
业务场景
解决方案
- 基于经营战略设定问题用户发现、鉴别规则
- 周期性更新满足规则的用户黑名单,加入set集合
- 用户行为信息到达后与黑名单进行对比,确认行为去向
- 黑名单过滤IP地址:应用于开放游客访问权限的信息源
- 黑名单过滤设备信息:应用于限定访问设备的信息源
- 黑名单过滤用户:应用于基于访问权限的信息源
Tips 12:
- redis应用于基于黑名单与白名单设定的服务控制
sorted_set
sorted_set类型
- 新的存储需求:数据排序有利于数据的有效展示,需要提供一种可以根据自身特征进行排序的方式
- 需要的存储结构:新的存储模型,可以保存可排序的数据
- sorted_set类型:在set的存储结构基础上添加可排序字段
sorted_set类型数据的基本操作
-
添加数据
-
获取全部数据
-
删除数据
-
按条件获取数据
-
条件删除数据
注意: -
min与max用于限定搜索查询的条件
-
start与stop用于限定查询范围,用作于索引,表示开始和结束索引
-
offset与count用于限定查询范围,用作于查询结果,表示开始位置和数据总量
-
获取集合数据总量
-
集合交、并操作
sorted_set类型数据的扩展操作
业务场景
业务分析
- 为所有参与排名的资源建立排序依据
解决方案
- 获取数据对应的索引(排名)
- score值获取与修改
Tips 13:
- redis 应用于计数器组合排序功能对应的排名
sorted_set类型数据的注意事项
- score 保存的数据存储空间是64位,如果是整数范围是-9007199254740992~9007199254740992
- score保存的数据也可以是一个双精度的double值,基于双精度浮点数的特征,可能会丢失精度,使用时要慎重
- score_set底层存储还是基于set结构的,因此数据不能重复,如果重复添加相同的数据,score值将被反复覆盖,保留最后一次修改的结果
sorted_set类型的应用场景
业务场景
解决方案
-
对于基于时间线限定的任务处理,将处理时间记录为score值,利用排序功能区分处理的先后顺序
-
记录下一个要处理的时间当到期后处理对应任务,移除redis中的记录,并记录下一个要处理的时间
-
当新任务加入时判定并更新当前下一个要处理的任务时间
-
为提升sorted_set的性能,通常将任务根据特征存储成若干个sorted_set。例如一小时内,一天内,周内,等,操作时逐级提升,将即将操作的若干个任务纳入到1小时内处理的队列中。
-
获取当前系统时间
Tips 14:
- redis应用于定时任务执行顺序管理或任务过期管理
解决方案
- 对于带有权重的任务,优先处理权重高的任务,采用score记录权重即可
多条件任务权重设定
如果权重条件过多时,需要对排序score值进行处理,保障score值能够兼容2条件或者多条件,例如外贸订单优先于国内订单,总裁订单优先于员工订单,经历订单优先于员工订单
- 因score长度受限,需要对数据进行截断处理,尤其是时间设置为小时或分钟即可
- 先设定订单类别,后设定订单发起角色类别,整体score长度必须是统一的,不足位补0.第一排序规则首位不得是0
- 例如 外贸101,国内102,经理004,员工008
- 员工下的外贸单score值为101008(优先)
- 经理下的国内单score值为102004
Tips 15:
- redis 应用于即时任务/消息队列执行管理
业务场景
解决方案
- 设计计数器,记录调用次数,用于控制业务执行次数。以用户id作为key,使用次数作为value
- 在调用前获取次数,判断是否超过限定次数
不超过次数的情况下,每次调用计数+1
业务调用失败,计数-1 - 为计数器设置生命周期为指定周期,例如1秒/分钟,自动清空周期内使用次数
解决方案改良
- 取消最大值的判定,利用incr操作超过最大值抛出异常的形式替代每次判断是否大于最大值
- 判断是否为nil
如果是,设置Max-次数
如果不是,计数+1
业务调用失败,计数-1 - 遇到异常即+操作超过上限,视为使用达到上限
Tips 16:
- redis 应用于限时按次结算的服务控制
业务场景
数据类型实践案例
业务场景
解决方案
- 依赖list的数据具有顺序的特征对消息进行管理,将list结构作为栈使用
- 对置顶与普通会话分别创建独立的list分别管理
- 当某个list中接收到用户消息后,将消息发送方的id从list的一侧加入list(此处设定左侧)
- 多个相同id发出的消息反复入栈会出现问题,在入栈之前无论是否具有当前ID对应的消息,先删除对应id
- 推送消息时先推送置顶会话list,再推送普通会话list,推送完成的list清除所有数据
- 消息的数量,也就是微信用户对话数量采用计数器的思想另行记录,伴随list操作同步更新
Tips 17:
- redis 应用于基于时间顺序的数据操作,而不关注具体时间。
通用命令
key通用指令
key特征
- key是一个字符串,通过key获取redis中保存的数据
key应该设计哪些操作?
- 对于key自身状态的相关操作,例如︰删除,判定存在,获取类型等
- 对于key有效性控制相关操作,例如:有效期设定,判定是否有效,有效状态的切换等
- 对于key快速查询操作,例如:按指定策略查询key
- .……
key 基本操作
- 删除指定key
- 获取key是否存在
- 获取key类型
key 扩展操作(时效性控制)
-
为key设置有效期
-
获取key的有效时间
-
切换key从时效性转换为永久性
key 扩展操作(查询控制)
- 查询key
查询模式规则
* 匹配任意数量的任意符号
? 配合一个任意符号
[] 匹配一个指定符号
key 其他操作
- 为key改名
- 对所有key排序
- 其他key通用操作
数据库通用指令
数据库
key的重复问题
- key是由程序员定义的
- redis在使用过程中,伴随着操作数据量的增加,会出现大量的数据以及对应的key
- *数据不区分种类、类别混杂在一起,极易出现重复或冲突
解决方案
- redis为每个服务提供有16个数据库,编号从0到15
- 每个数据库之间的数据相互独立
db 基本操作
- 切换数据库
- 其他操作
- 数据移动
- 数据清除
Jedis
Jedis简介
编程语言与redis
- Java语言连接redis服务
Jedis
SpringData Redis
Lettuce - c、C++、C#、Erlang、Lua、Objective-C、Perl、PHP、Python、Ruby、Scala
HelloWorld(Jedis版)
准备工作
-
jar包导入
下载地址:https://mvnrepository.com/artifact/redis.clients/jedis -
基于maven
<dependency> <groupId>redis.clients</groupId> <artifactId>jedis</artifactId> <version>2.9.0</version> </dependency>
客户端连接redis
-
连接redis
-
操作redis
-
关闭redis
Jedis读写redis数据
案例:服务调用次数控制
人工智能领域的语义识别与自动对话将是未来服务业机器人应答呼叫体系中的重要技术,百度自研用户评价语义识别服务,免费开放给企业试用,同时训练百度自己的模型。现对试用用户的使用行为进行限速,限制每个用户每分钟最多发起10次调用
- 案例要求
- 设定A、B、C三个用户
- A用户限制10次/分调用,B用户限制30次/分调用,C用户不限制
案例:需求分析
①设定一个服务方法,用于模拟实际业务调用的服务,内部采用打印模拟调用
② 在业务调用前服务调用控制单元,内部使用redis进行控制,参照之前的方案
③对调用超限使用异常进行控制,异常处理设定为打印提示信息
④主程序启动3个线程,分别表示3种不同用户的调用
Jedis简易工具类开发
可视化客户端