06图像预处理——transforms

本文详细介绍了torchvision.transforms在计算机视觉中的应用,包括常用的图像预处理方法如标准化、缩放、裁剪等,并探讨了其运行机制。特别是数据标准化,通过transforms.normalize实现,对每个通道进行(mean - std)的标准化操作,有助于加速模型训练的收敛。
摘要由CSDN通过智能技术生成

一、transforms运行机制

1.1 torchvision——计算机视觉工具包

  • torchvision.transforms : 常用的图像预处理方法
  • torchvision.datasets : 常用数据集的dataset实现, MNIST, CIFAR-10, ImageNet等
  • torchvision.model: 常用的模型预训练, AlexNet, VGG, ResNet, GoogLeNet等

1.2 torchvision.transforms : 常用的图像预处理方法

  • 数据中心化, 数据标准化
  • 缩放, 裁剪, 旋转, 翻转, 填充, 噪声添加
  • 灰度变换, 线性变换, 仿射变换
  • 亮度、饱和度及对比度变换

示例:

norm_mean = [0.485, 0.456, 0.406]             # 设置标准化的均值
norm_std = [0.229, 0.224, 0.225]    
transforms.GaussianBlur是torchvision库中的一个预定义的图像变换方法。它用于对图像进行高斯模糊处理,可以通过指定模糊核的大小和标准差来调节模糊程度。在提供的代码中,transform2通过transforms.Compose将自定义的AddBlur方法包装成一个预处理方法,然后使用transforms.RandomApply将其以一定的概率应用于输入图像。因此,当你需要使用transforms.GaussianBlur进行图像预处理时,可以根据需要选择合适的参数进行调用。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [torchvision.transforms:同时使用RandomApply、RandomChoice,官方预处理方法、自定义预处理方法](https://blog.csdn.net/qq_40682833/article/details/127740496)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] - *2* *3* [『PyTorch』学习笔记 1 —— transforms](https://blog.csdn.net/libo1004/article/details/116673227)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT0_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值