扩展欧几里得 不定方程

欧几里得算法提供了一种快速计算最大公约数的方法。而扩展欧几里得算法不仅能够求出其最大公约数。而且能够求出m,n和其最大公约数构成的不定方程mx+ny=d的两个整数x,y(这里x和y不一定为正数)。

在欧几里得算法中,终止状态是n == 0时,这时候其实就是gcd(m,0);我们想从这个最终状态反推出刚开始的状态。由欧几里得算法可知。
g c d ( m , n ) = g c d ( n , m   m o d   n ) gcd(m,n) = gcd(n,m \ mod \ n) gcd(m,n)=gcd(n,m mod n)
那么有如下表达式:

g c d ( m , n ) = m × x 1 + n × y 1 gcd(m,n) = m \times x1+n \times y1 gcd(m,n)=m×x1+n×y1

g c d ( n , m m o d n ) = n ∗ x 2 + ( m − m / n ∗ n ) ∗ y 2 gcd(n,m mod n) = n*x2+(m - m/n*n)*y2 gcd(n,mmodn)=nx2+(mm/nn)y2

(此处的m/n表示整除,例如:6/4 = 1;所以:m mod n = m % n = m - m / n * n)

化简上式有:nx2 + m * y2 - m/nn*y2

= my2 + n(x2 - m/n*y2)

与原式 gcd(m,n) = mx1+ny1;​​​​​​对比,容易得出:

x1 = y2
y1 = x2 - m/n*y2;

根据上面的递归式和欧几里得算法的终止条件n == 0,我们可以很容易知道最终状态是m * x1 + 0 * y1 = m;故:x1 = 1;根据上述的递推公式和最终状态,可以写出代码如下:

ll gcd(ll a,ll b,ll &x,ll &y){
    if(!b){
        x=1;y=0;
        return a;
    }
    ll d=gcd(b,a%b,y,x);//注意这里x,y互相交换了一下
    y-=a/b*x;//这里是在x,y互相交换的基础上对y=tmp-a/b*y的改进
    return d;
}

通解

在这里插入图片描述
t b d t\frac{b}{d} tdb相当于 a d x \frac{a}{d}x dax

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值