对于形如ax+by=c的方程称为不定方程
那么我们可以利用扩展欧几里德算法求出该方程的整数解
我们可以类比对于这个方程而言,我们可以先找到一个特解,然后让c等于0
找出通解,那么我们就可以确定这个方程的解系了
那么我们首先要知道,我们利用扩展欧几里德算法解出的解是方程c为gcd(a,b)时的解,那么我们要确保c可以整除
gcd(a,b),这样才存在解。
那么我们另a1=a/gcd(a,b)
b1=b/gcd(a,b)
那么方程变为 a1x+b1y=c/gcd(a,b)
我们寻找通解,另c/gcd(a,b)等于0,那么等到a1x=-b1y我们知道a1|b1y由于a1与b互质,那么y=a1t;
同理x=-b1t;
代码如下:
#include<iostream>
#include<vector>
using namespace std;
/*
利用扩展欧几里德算法解不定方程
*/
int gcd(int a, int b, int &x, int &y)
{
if (b == 0)
{
x = 1;
y = 0;
return a;
}
int r = gcd(b, a%b,x,y);
int t = x;
x = y;
y = t - a / b*y;
return r;
}
void main()
{
int a, b, c;
cin >> a >> b >> c;
int x = 0;
int y = 0;
int k = gcd(a, b, x, y);
if (!(c % k))
{
x = x*(c / k);
y = y*(c / k);
for (int i = 0; i < 100; i++)//存在解的话存在无数多个 i就是t
{
if (x>=0 && y >= 0)
break;
x = x - i*(b / k);
y = y + i*(a / k);
}
cout << k << " " << x << " " << y << endl;
}
else
{
cout << "无解" << endl;
}
system("pause");
}