用扩展欧几里德算法解不定方程

对于形如ax+by=c的方程称为不定方程

那么我们可以利用扩展欧几里德算法求出该方程的整数解

我们可以类比对于这个方程而言,我们可以先找到一个特解,然后让c等于0

找出通解,那么我们就可以确定这个方程的解系了

那么我们首先要知道,我们利用扩展欧几里德算法解出的解是方程c为gcd(a,b)时的解,那么我们要确保c可以整除

gcd(a,b),这样才存在解。

那么我们另a1=a/gcd(a,b)

                  b1=b/gcd(a,b)

那么方程变为 a1x+b1y=c/gcd(a,b)

我们寻找通解,另c/gcd(a,b)等于0,那么等到a1x=-b1y我们知道a1|b1y由于a1与b互质,那么y=a1t;

同理x=-b1t;

代码如下:
 

#include<iostream>
#include<vector>
using namespace std;
/*
利用扩展欧几里德算法解不定方程
*/
int gcd(int a, int b, int &x, int &y)
{
	if (b == 0)
	{
		x = 1;
		y = 0;
		return a;
	}
	int r = gcd(b, a%b,x,y);
	int t = x;
	x = y;
	y = t - a / b*y;
	return r;
}
void main()
{
	int a, b, c;
	cin >> a >> b >> c;
	int x = 0;
	int y = 0;
	int k = gcd(a, b, x, y);
	if (!(c % k))
	{
		x = x*(c / k);
		y = y*(c / k);
		for (int i = 0; i < 100; i++)//存在解的话存在无数多个 i就是t
		{
			if (x>=0 && y >= 0)
				break;
			x = x - i*(b / k);
			y = y + i*(a / k);
		}
		cout << k << " " << x << " " << y << endl;
	}
	else
	{
		cout << "无解" << endl;
	}


	system("pause");

}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值