吴恩达machine learning学习笔记
Loki97
这个作者很懒,什么都没留下…
展开
-
吴恩达机器学习笔记--第一周-3.参数学习
week1-3.Parameter Learning一、Gradient Descent二、Gradient Descent Intuition梯度下降(gradient descent)算法过程:梯度下降算法特点:从不同起始点开始计算可能会达到不同的局部最优点(different local optimum)alpha-学习率(learning rate),代表梯度下降时的步长。theta0和t...原创 2018-04-05 21:26:30 · 469 阅读 · 0 评论 -
吴恩达机器学习笔记--第四周-2.神经网络
week4-2.Neural Network一、Model Representation I在神经网络中,常常把Sigmoid/逻辑函数叫做激励函数(activation function),而把参数(parameter)theta叫做权重(weights)。有时候可以把x0(bias unit)添加到神经网络里去,有时候不添加。输入层:input layer;隐藏层:hidden layer;输...原创 2018-04-28 23:41:20 · 242 阅读 · 0 评论 -
吴恩达机器学习笔记--第四周-1.使用神经网络的动机
week4-1.Motivation一、Non-linear Hypothesis在一些分类问题中,需要的参数可能会非常多,而且这些参数可能会以高次形式组合,变成更多的参数项。比如图片中每一个像素点(pixel)的表示,需要像素点坐标、灰度/RGB来表示。所以可以通过神经网络(Neural network)来解决复杂分类问题。二、Neurons and the Brain把传感器(sensor)接...原创 2018-04-28 23:37:15 · 415 阅读 · 0 评论 -
吴恩达机器学习笔记--第三周-4.解决过拟合问题
week3-4.Solving the Problem of Overfitting一、The Problem of Overfittingunderfitting=high bias;overfitting=high variance。避免过拟合的方法:二、Cost Function在代价函数J中对每个参数theta加入正则化项(罚函数),从而使所有的参数变小。但是不对theta0增加正则化项。...原创 2018-04-20 12:08:55 · 792 阅读 · 2 评论 -
吴恩达机器学习笔记--第三周-3.多类别分类:一对多策略
week3-3.Multiclass Classification:One-vs-all对于一个三元分类问题,可以转化为三个二元分类问题。对每个二元分类问题设计假设函数h(x),并对数据集进行0-1标记。三个二元分类都训练好后,对于新输入的测试样本x,分别投到三个二分类假设函数中算出h值,随后选最大h值所对应的类别。...原创 2018-04-20 12:05:23 · 2348 阅读 · 0 评论 -
吴恩达机器学习笔记--第三周-2.逻辑回归模型
week3-2.Logistic Regression Model一、Cost Function逻辑回归的基本问题:使用线性回归中的代价函数J不合适。因为h(x)=1/(1+e^(-theta'*x))是非线性的,带入后得到的代价函数是非凸的(non-convex),有很多局部最优点,可能找不到全局最优。逻辑回归中使用的代价函数J:二、Simplified Cost Function and Gr...原创 2018-04-20 12:00:02 · 272 阅读 · 0 评论 -
吴恩达机器学习笔记--第三周-1.分类与逻辑回归
week3-1.Classification and Representation一、Classification二分类(binary classification):根据阈值(threshold)确定类别。如果用线性回归(linear regression),一个异常值(最右边的点)的存在可能会在很大程度上影响分类方式。所以不建议用线性回归。可能出现h(x)<0或>1的情况,为了避免...原创 2018-04-20 11:53:10 · 531 阅读 · 0 评论 -
吴恩达机器学习笔记--第二周-3.解析法计算参数
week2-3.Computing Parameters Analytically一、Normal Equation正规方程(normal equation)用求(偏)导的方法求最值(若是多元变量函数,需要对每个变量求偏导,然后令他们都为0):使用正规方程求J函数最值:构建设计矩阵:例子:用以下公式可直接求出使得代价函数J最小的theta值:推导过程:normal equation採用矩阵运算能够...原创 2018-04-12 20:00:22 · 429 阅读 · 0 评论 -
吴恩达机器学习笔记--第一周-4.线性代数复习
week1-4.Linear Algebra Review一、Matrics and Vectors二、Addition and Scalar三、Matrix Vector Multiplication四、Matrix Matrix Multiplication五、Inverse and Transposeprediction=datamatrix*parameters...原创 2018-04-12 19:51:38 · 256 阅读 · 0 评论 -
吴恩达机器学习笔记--第二周-2.多变量的线性回归
week2-2.Multivarite Linear Regression一、Multiple Features多变量(multiple features/variable)的一些定义:改写后的假设:二、Gradient Descent for Multiple Variables将theta0、theta1······thetan看做一个n+1维的theta向量;将J看做theta向量的函数。只...原创 2018-04-12 19:49:53 · 797 阅读 · 0 评论 -
吴恩达机器学习笔记--第一周-2.模型和损失函数
week1-2.Model and Cost Function一、Model Representation训练集(training set)中的一些符号表示:单变量线性回归(linear regression with one variable/univariate linear regression)二、Cost Funtion三、Cost Function-Intruction I四、Cost...原创 2018-04-05 21:22:00 · 514 阅读 · 1 评论 -
吴恩达机器学习笔记--第一周-1.介绍
week1-1.Introduction一、What is Machine Learning起源:1959年Arthur Samuel制作了一个下西洋棋的程序,可以自己学习,并与自己对弈。E、T、P的实例:二、Supervised Learning监督学习的分类与案例监督学习为根据数据进行预测结果,分别为回归问题和离散(分类)问题1.回归regression给一个房价数据集,不同房子给出正确的价格...原创 2018-04-05 21:17:25 · 234 阅读 · 0 评论 -
吴恩达机器学习笔记--第四周-3.神经网络的应用
week4-3.Applications一、Examples and Intuitons I神经网络实现与(and)运算。神经网络实现或(or)运算。二、Examples and Intuitions II神经网络实现非(not)运算。通过and运算、(not)and(not)运算和or运算的叠加组合实现xnor运算:即x1、x2不同时为0,x1、x2相同时为1.三、Multiclass Clas...原创 2018-04-28 23:46:35 · 423 阅读 · 0 评论