数学距离总结(机器学习数学基础)

本文介绍了机器学习中常见的距离度量方法,包括欧氏距离、标准化欧氏距离、曼哈顿距离、切比雪夫距离、马氏距离以及夹角余弦等,这些度量在分类问题中起到关键作用。
摘要由CSDN通过智能技术生成

在机器学习中,做分类时经常须要估算不相同本之间的类似性度量(Similarity Measurement)。这时通常採用的方法就是计算样本间的距离。采用什么样的方法计算距离是非常讲究。甚至关系到分类的正确与否。

在这里首先要理解距离概念:

闵可夫斯基距离(Minkowski Distance)

闵氏距离不是一种距离。而是一组距离的定义,下文说的几个距离都是属于闵可夫斯基距离的。

(1) 闵氏距离的定义

两个n维变量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的闵可夫斯基距离定义为:

这里写图片描写叙述

当中p是一个变參数。

当p=1时,就是曼哈顿距离

当p=2时,就是欧氏距离

当p→∞时,就是切比雪夫距离

依据变參数的不同。闵氏距离能够表示一类的距离。

简单说来。闵氏距离的缺点主要有两个: 
(1)将各个分量的量纲(scale),也就是“单位”当作相同的看待了。 
(2)没有考虑各个分量的分布(期望,方差等)可能是不同的。


欧氏距离(Euclidean Distance)

欧氏距离是最易于理解的一种距离计算方法,源自欧几里得几何中两点间的距离公式。

(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:

这里写图片描写叙述

(2)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:

这里写图片描写叙述

也能够用表示成向量运算的形式:

这里写图片描写叙述

标准化欧氏距离 (Standardized Euclidean distance )

(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值