方法一:动态规划
如果一个下标从i到j的子串(p[i,j])是回文串,那去掉其首尾的串p[i+1,j-1]也是回文串,不断回溯得到边界情况:串长为2和串长为1的子串必为回文串。内层循环为移动子串左边界并判断是否为回文,外层循环控制子串的长度。
状态转移:p[i,j]为回文 = p[i+1,j-1]为回文 且 元素i==元素j 。
边界条件:子串长为1;子串长为2 且 其中两个元素相同。
class Solution {
public:
string longestPalindrome(string s) {
int n = s.size();
int maxlength = 1;
int begin = 0; //记录答案子串的起始位置
if(n < 2)//长度为1的串必为回文串
return s;
//用dp[i][j]表示子串s[i...j]是否为回文
vector<vector<bool>> dp(n,vector<bool>(n));
//初始化长度为1的串
for(int i=0;i<n;++i)
dp[i][i] = true;
//枚举子串长度
for(int L=2;L<=n;L++){
for(int i=0;i<n;i++){//枚举左边界
int j = i + L -1;//右边界
if(j>=n)//越界退出循环
break;
//判断子串是否回文
if(s[i]!=s[j])//子串边界不同
dp[i][j]=false;
else{//边界相同
if(j-i<=2)//处理动规边界值:串长小于3且边界相同,必为回文
dp[i][j] = true;
else //一般情况直接使用状态转移
dp[i][j] = dp[i+1][j-1];
}
if(dp[i][j]==true && j-i+1>maxlength){
maxlength = j-i+1;
begin = i;
}
}
}
return s.substr(begin,maxlength);
}
};
方法二:中心扩散
原理就是从一个(或两个)元素开始,不断比较其两边的元素,如果相等则划入其中并继续比较。也可以理解为从上一种方法中的边界情况开始扩展,扩展到不能扩展为止。
首先写一个扩展函数,然后在对串中元素的遍历中,不断以该元素为中心进行扩展,并记录最长回文子串的头尾位置。
class Solution {
public:
#include<bits/stdc++.h>
pair<int,int> expandAroundCenter(const string& s,int left,int right){
while(left>=0 && right<s.size() && s[left]==s[right]){
//两侧元素相同,向外扩展
--left;
++right;
}
return {left+1,right-1};//多加了,收缩一次
}
string longestPalindrome(string s) {
int start=0,end=0;
for(int i=0;i<s.size();++i){
auto [left1,right1] = expandAroundCenter(s,i,i); //子串长度奇数
auto [left2,right2] = expandAroundCenter(s,i,i+1);//子串长度偶数
if(right1 - left1 > end - start){
start = left1;
end = right1;
}
if(right2 - left2 > end -start){
start = left2;
end = right2;
}
}
return s.substr(start,end-start+1);
}
};
方法三:Manacher方法
将串中元素间隔插入一个符号,并在首尾也插入该符号。