《Python数据挖掘入门与实践》Robert Layton 人民邮电出版社
The OneR algorithm is:
- For each variable
- For each value of the variable
- The prediction based on this variable goes the most frequent class
- Compute the error of this prediction
- Sum the prediction errors for all values of the variable
- For each value of the variable
- Use the variable with the lowest error
import numpy as np #numpy提供矩阵运算功能
# Load our dataset
from sklearn.datasets import load_iris #scikit-learn库内置了Iris植物分类数据集
#X, y = np.loadtxt("X_classification.txt"), np.loadtxt("y_classification.txt")
dataset = load_iris() #读入python自带的iris数据集
X = dataset.data #字典dataset中data键下的数据 每条数据含植物的四种特征属性
y = dataset.target #字典dataset中target键下的数据 0、1、2分别代表三种植物
print(dataset.DESCR) #字典dataset中DESCR键下的内容
n_samples, n_features = X.shape #shape获取X行列数
离散化:高于该属性均值为1,低于均值为0
# Compute the mean for each attribute
attribute_means = X.mean(axis=0) #mean():函数求取均值;axis =0:对各列求均值,返回 1*n 矩阵
assert attribute_means.shape == (n_features,) #assert断言是声明其布尔值必须为真的判定,如果发生异常就说明表达示为假。用来测试表示式,其返回值为假,就会触发异常。
X_d = np.array(X >= attribute_means, dtype='int') <span style="font-family: Arial, Helvetica, sans-serif;">#NumPy的数组类被称作ndarray,通常被称作数组。array()创建数组,dtype设置数据类型,此处将X与均值比较大小后的布尔值转换为int
# 将离散后的数据集X_d分为训练集和测试集
from sklearn.cross_validation import train_test_split #train_test_split随机划分训练集和测试集
# Set the random state to the same number to get the same results as in the book
random_state = 14 #随机数种子:其实就是该组随机数的编号,在需要重复试验的时候,保证得到一组一样的随机数。
X_train, X_test, y_train, y_test = train_test_split(X_d, y, random_state=random_state)
print("There are {} training samples".format(y_train.shape))
print("There are {} testing samples".format(y_test.shape))
from collections import defaultdict from operator import itemgetter def train(X, y_true, feature): #定义train函数,参数为数据集、类别、当前特征变量对应的索引值,计算给定特征变量时对应的预测结果和错误率,如给定以花瓣长度为判断依据,返回当花瓣长度大于平均值和小于平均值时,对应的预测类别,以及总错误率 """Computes the predictors and error for a given feature using the OneR algorithm Parameters ---------- X: array [n_samples, n_features] The two dimensional array that holds the dataset. Each row is a sample, each column is a feature. y_true: array [n_samples,] The one dimensional array that holds the class values. Corresponds to X, such that y_true[i] is the class value for sample X[i]. feature: int An integer corresponding to the index of the variable we wish to test. 0 <= variable < n_features #本例中有0、1、2、3四个特征变量索引值 Returns ------- predictors: dictionary of tuples: (value, prediction) For each item in the array, if the variable has a given value, make the given prediction. error: float The ratio of training data that this rule incorrectly predicts. """ # Check that variable is a valid number n_samples, n_features = X.shape #获取参数X的行列数 assert 0 <= feature < n_features #验证参数feature满足条件 # Get all of the unique values that this variable has values = set(X[:,feature]) #set()创建集合,values赋值为所有samples对应的该feature的值 # Stores the predictors array that is returned predictors = dict() #预测出的类别 errors = [] #错误率 for current_value in values: #遍历当前feature的每个值,本例中共0、1两个取值 most_frequent_class, error = train_feature_value(X, y_true, feature, current_value) predictors[current_value] = most_frequent_class #当feature的取值为current_value时,预测类别为most_frequent_class errors.append(error) #append() 方法用于在列表末尾添加新的对象 # Compute the total error of using this feature to classify on total_error = sum(errors) #把当前feature每个取值(此处为0和1)的错误率求和,作为该feature的错误率 return predictors, total_error #({特征值1:类别1,特征值2:类别2},错误率) # Compute what our predictors say each sample is based on its value #y_predicted = np.array([predictors[sample[feature]] for sample in X]) def train_feature_value(X, y_true, feature, value): #定义函数,参数数据集、类别(0、1、2)、当前特征的索引值(0、1、2、3)、特征取值(0、1),计算给定特征值情况下的预测结果和错误率,如给定花瓣大于平均值,返回最可能的类别和错误率 # Create a simple dictionary to count how frequency they give certain predictions class_counts = defaultdict(int) #当给定特征值时,分别统计有几个个体属于类别0、类别1和类别2 # Iterate through each sample and count the frequency of each class/value pair for sample, y in zip(X, y_true): #遍历数据集中的每个个体,zip的应用:将一系列对象中对应的元素打包成一个tuple(元组),返回由这些tuples组成的列表 if sample[feature] == value: #如果当前个体的当前特征取值为当前指定特征值,如:当前个体的花瓣长度大于平均值 class_counts[y] += 1 #当前个体对应类别的统计次数+1,class_counts {类别1:数量1,类别2:数量2,类别3:数量3} # Now get the best one by sorting (highest first) and choosing the first item sorted_class_counts = sorted(class_counts.items(), key=itemgetter(1), reverse=True) #排序,返回一个新列表[(类别1,数量1),(类别2,数量2),...] most_frequent_class = sorted_class_counts[0][0] #取出列表sorted_class_counts中第一个元祖中的第一个值,即类别1 # The error is the number of samples that do not classify as the most frequent class # *and* have the feature value. n_samples = X.shape[1] #样本个体总数 error = sum([class_count for class_value, class_count in class_counts.items() if class_value != most_frequent_class]) #sum的参数可为iterable,注意列表推导式(list comprehension)的应用 return most_frequent_class, error #返回(类别1,总错误率)
# Compute all of the predictors all_predictors = {variable: train(X_train, y_train, variable) for variable in range(X_train.shape[1])}
#all_predictors类别为字典{特征索引1:({特征值1:类别1,特征值2:类别2},错误率),...};注意字典推导的应用;此处的variable代表feature特征变量的索引值;shape[1]返回矩阵X_train的第二维长度,即特征变量的个数:4种特征。 errors = {variable: error for variable, (mapping, error) in all_predictors.items()}#获得{特征值索引1:错误率1,...} # Now choose the best and save that as "model" # Sort by error best_variable, best_error = sorted(errors.items(), key=itemgetter(1))[0] #获得(特征值索引,错误率) print("The best model is based on variable {0} and has error {1:.2f}".format(best_variable, best_error)) # Choose the bset model model = {'variable': best_variable, 'predictor': all_predictors[best_variable][0]} #获得{'variable':特征值索引,'predictor':({特征值1:类别1,特征值2:类别2}} print(model)
#应用训练好的model对测试集进行预测
def predict(X_test, model): #定义函数
variable = model['variable']
predictor = model['predictor']
y_predicted = np.array([predictor[int(sample[variable])] for sample in X_test]) #int(sample[variable])取出sample的特征索引对应的变量值并转化为int,np.array生产数组,例如A=np.array([a for a in range(5)])
return y_predicted #获得array([类别0, 类别1,...])y_predicted = predict(X_test, model) #预测
print(y_predicted)
accuracy = np.mean(y_predicted == y_test) * 100 #准确率
print("The test accuracy is {:.1f}%".format(accuracy))
from sklearn.metrics import classification_report #classification_report构建一个显示主要分类指标的文本报告
print(classification_report(y_test, y_predicted))