题目:
输入一个整数,输出该数二进制表示中1的个数。
思路:
如果一个整数不为 0,那么这个整数至少有一位是 1。
如果我们把这个整数减 1,那么原来处在整数最右边的 1 就会变为 0,原来在 1 后面的所有的 0 都会变成 1 (如果最右边的1后面还有0的话)。其余所有位将不会受到影响。
举个例子:
一个二进制数 1100,减去 1 后,结果是 1011,第三位变成 0,它后面的两位 0 变成了 1,而前面的 1 保持不变。
我们发现减1的结果是把最右边的 1 开始的所有位都取反了。
再把原来的整数和减去 1 之后的结果做与运算,从原来整数最右边一个1那一位开始所有位都会变成0。如:1100 & 1011 = 1000。
也就是说,把一个整数减去 1,再和原整数做与运算,会把该整数最右边一个1变成0。那么一个整数的二进制有多少个 1,就可以进行多少次这样的操作。
代码:
package 二进制中1的个数10;
public class Demo {
public static void main(String[] args) {
Solution solution = new Solution();
System.out.println(solution.NumberOf1(5));
}
}
class Solution {
/**
* 输入一个整数,输出该数二进制表示中1的个数。
*/
public int NumberOf1(int n) {
int count = 0;
while (n != 0) {
++count;
n = n & (n-1);
}
return count;
}
}