题目:https://cn.vjudge.net/contest/178387#problem/D
X轴上有N条线段,每条线段有1个起点S和终点E。最多能够选出多少条互不重叠的线段。(注:起点或终点重叠,不算重叠)。
思路:这题和重叠的题很类似,先左端点排序,然后从右向左计算,如果当前线段的右值小于liml(当前最左值),则更新Liml,计数+1.从右向左是因为确保能到达最大长度。
方法二:对每个点的右端点按照升序排序。这样保证每次选到的是最靠左的线段,就能尽量剩下空间给多的线段。
http://blog.csdn.net/zchahaha/article/details/51606000
方法一:
#include<iostream>
#include<algorithm>
using namespace std;
struct duan {
int l, r;
}a[20005];
bool cmp(duan x, duan y)
{
if (x.l == y.l)
return x.r < y.r;
else
return x.l < y.l;
}
int main()
{
int n,i;
while (cin >> n)
{
for (i = 0; i < n; i++)
cin >> a[i].l >> a[i].r;
sort(a, a + n, cmp);
int minl = a[n - 1].l, sum = 0;
for (i = n - 2; i >= 0; i--)
{
if (a[i].r <= minl)
{
minl = a[i].l;
if (sum == 0)
sum += 2;
else
sum++;
}
}
cout << sum << endl;
}
return 0;
}