AI人工智能概述

一、人工智能的基本概念和发展历程

1.1 人工智能的基本概念

AI人工智能(Artificial Inteligence):人制造出来的智慧机器或系统。包括理解语言、识别图像、解决复杂问题和学习新技能等。

AGI(Artificial General Intelligence,通用人工智能):AGI是AI领域的终极目标之一,AGI指的是具有广泛认知能力的人工智能系统,能够像人类一样在多种环境中学习和应用知识,执行各种需要智能的任务。

AIGC (Artificial Intelligence Generated Content,人工智能生成内容):利用人工智能技术生成内容的新型生产方式,包括文本、图像、音频和视频等内容。AIGC 技术可以用于多种应用,如自动撰写新闻文章、生成艺术画作、创作音乐、制作视频游戏内容等。

Generative AI 简称 GenAI:生成式人工智能 GenAI是一种目标,让机器产生复杂有结构的内容。

机器学习:一种手段,让机器自动从资料中找到公式

深度学习:一种更厉害的手段,神经网络-非常大量参数的函数

大语言模型:是一类具有大量参数的“深度学习"模型,Large Language Models,简称 LLMS

ChatGPT: 是 AIGC 技术一个应用实例它代表了 AIGC 在文本生成领域的进展,形象比喻:通过投喂大量资料预训练后,ChatGPT 会通过聊天玩”文字接龙游戏了。英文解释:Chat 聊天,G: Generative 生成,P: Pre-trained 预训练,T: Transformer 类神经网络模型

大模型(Large Models):大模型是实现AI功能的一种技术手段。

用表格输出人工智能的【AI人工智能,AGI,AIGC,GenAI,机器学习,深度学习,大语言模型,chatGPT,大模型】的中文英文全名,定义、原理、重要性,优势,劣势,跟其它相关技术联系和结构,实际解决问题,应用什么场景,结论。

中文名 英文名 定义 原理 重要性 优势 劣势 相关技术联系和结构 实际解决问题 应用场景 结论
人工智能 Artificial Intelligence (AI) 使计算机系统执行通常需要人类智能才能完成的任务。 基于算法和数据,通过机器学习和其他方法进行推理和决策。 推动技术进步,应用广泛,从自动化到高级数据分析。 提高效率、自动化重复任务、处理复杂数据。 需要大量数据和计算资源,可能存在偏见和安全问题。 包括机器学习、深度学习、自然语言处理等子领域。 自动化操作、数据分析、决策支持。 各种行业,如医疗、金融、制造、交通等。 AI是技术进步的重要推动力,但需注意伦理和安全问题。
通用人工智能 Artificial General Intelligence (AGI) 具备与人类相当的智能,可以在任何任务中表现出人类水平的能力。 基于理论尚未完全实现,目标是创建可以理解、学习和推理的系统。 实现AGI将是计算机科学的重大突破,具有潜在无限应用。 能够执行广泛的任务,具有自适应学习能力。 当前技术难以实现,面临巨大技术挑战和伦理问题。 超越狭义AI,涉及高级认知、学习和推理能力。 理论上可以解决任何需要智能的任务。 未来潜在应用于所有人类活动领域。 AGI是人工智能的终极目标,但实现路径仍不明确。
生成式人工智能 Artificial Intelligence Generated Content (AIGC) 使用AI生成新的内容,如文本、图像、音乐等。 基于深度学习模型,如生成对抗网络(GAN)和变分自动编码器(VAE)。 生成内容的能力广泛应用于创意行业和内容生产。 能生成高质量、创新性的内容,减少人力成本。 可能生成不良或不道德内容,涉及版权和伦理问题。 依赖于深度学习和大模型技术,如GAN和VAE。 自动生成图像、文本、音乐等,支持创意工作。 广泛应用于广告、设计、影视、游戏等创意产业。 AIGC提升了内容创作效率,但需管理伦理和法律问题。
生成式AI Generative AI 通过AI技术生成新的数据和内容。 利用生成对抗网络(GAN)或其他生成模型来创建新数据。 大大提升内容创作和数据生成能力。 高效生成多样化内容,支持个性化和定制化需求。 存在生成虚假信息的风险,可能导致滥用。 深度学习技术,如GAN和变分自动编码器(VAE)。 内容创作、模拟数据、个性化推荐。 娱乐、广告、医疗等需要生成新数据和内容的领域。 生成式AI在创意和数据生成领域有巨大潜力,但需防范滥用。
机器学习 Machine Learning (ML) 通过数据和统计技术训练模型,使其能够自主学习和预测。 基于统计模型和算法,通过数据训练和优化。 广泛应用于各种数据驱动的决策和预测任务。 能处理和分析大量数据,提高预测准确性。 需要大量高质量数据,存在过拟合风险。 是人工智能的核心技术,支持深度学习和大数据分析。 数据分析、模式识别、预测分析。 各行各业,如金融预测、市场分析、推荐系统等。 机器学习是数据驱动决策的关键技术,但需解决数据质量和模型鲁棒性问题。
深度学习 Deep Learning 使用多层神经网络处理复杂模式和特征的机器学习技术。 基于人工神经网络,特别是深层神经网络。 在图像识别、自然语言处理等领域表现出色,推动AI发展。 高精度处理复杂数据,能自动提取特征。 训练复杂模型需要大量计算资源和数据。 深度学习是机器学习的一个子集,使用多层神经网络。 图像识别、语音识别、自然语言处理。 计算机视觉、语音助手、自动驾驶等领域。 深度学习极大提高了AI的性能,但计算资源需求高且解释性差。
大语言模型 Large Language Model (LLM) 能理解和生成自然语言文本的大规模神经网络模型。 基于Transformer架构,通过大规模文本数据训练。 在自然语言处理任务中表现优异,推动对话系统和文本生成技术。 能生成高质量、连贯的文本,支持多种语言任务。 存在语言偏见和生成不当内容的风险。 基于深度学习和Transformer架构,支持自然语言处理任务。 自动生成文本、回答问题、语言翻译。 对话系统、自动翻译、内容生成等。 大语言模型推动了NLP的发展,但需解决偏见和伦理问题。
ChatGPT ChatGPT 基于GPT的对话系统,能够生成自然、流畅的对话。 使用GPT(生成预训练变换模型),基于大量对话数据进行微调。 在对话系统和客服应用中表现出色,提供自然的交互体验。 能生成连贯、有趣的对话,提高用户满意度。 可能生成不准确或不适当的回复,涉及安全和伦理问题。 使用大语言模型技术,依赖于深度学习和自然语言处理。 提供自动回复、客户支持、信息查询等服务。 在线客服、虚拟助手、社交聊天等场景。 ChatGPT显著提升了对话系统的能力,但需管理生成内容的质量和安全性。

人工智能有三大马车,即:数据、算法和算力,数据按照用途可分为:训练集(train set)、验证集(validation set)考试和测试集(test set),训练集:验证集:测试集=6:2:2;验证集并不是必须的,变为8:2

参考资料:AI产品经理的7堂必修课:必备的AI基础知识 – 人人都是产品经理

1.2 人工智能的发展历程

用表格输出所有人工智能技术发展里程碑大事记,具体事项,时间,重要人物,事件影响,解决问题,带来什么新问题,哪些实际应用,结论。

具体事项 时间 重要人物 事件影响 解决问题 带来新问题 实际应用 结论
达特茅斯会议(AI概念提出) 1956年 约翰·麦卡锡, 马文·明斯基 AI研究正式起步,奠定基础 提出机器可以模拟人类智能的问题 AI能力有限,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值