支持向量机(一)

本文介绍了支持向量机(SVM),重点讲解了如何寻找最大化边际的超平面以区分两类数据。内容包括线性可区分和不可区分的概念,以及通过代码实现SVM进行简单分类,并用图形方式展示分类结果。
摘要由CSDN通过智能技术生成
 一.理论
1.背景
1)历史发展:1963年提出,目前的版本是1993年提出
2)历史地位:深度学习出现之前(2012),倍认为最成功、表现最好的算法‘
2.机器学习的一般框架
训练集--->提取特征向量 --->结合一定的算法(分类器:比如决策树、KNN)--->得到结果
3.介绍

1)例子


两类?那条线分割较好?

2)SVM寻找区分两类的超平面(hyper plane),使边际(margin)最大


3)思考:
总共有多少个超平面?无数个
如何选取边际最大的超平面(Max Margin Hyperplane)
超平面到一侧最近点的距离等于另一侧最近点的距离,两侧的两个超平面平行
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值