Delaunay三角剖分与Voronoi图生成

Delaunay三角剖分与Voronoi图生成

介绍

Delaunay三角剖分

Delaunay三角剖分是一种用于二维和三维空间的特殊类型的三角剖分。给定一组在平面上的点,Delaunay三角剖分将这些点连接成三角形,使得在所有可能的三角形中,这些三角形的最小角最大,外接圆最小。

Bowyer-Watson算法生成三角形,分为以下步骤操作:

  1. 创建一个超级三角形,包含所有的点。
  2. 依次添加点到三角剖分中,对于每个添加的点:
    • 找到包含此点的三角形。
    • 删除此三角形,并创建三个新的三角形,新的三角形由旧的三角形的每条边和新添加的点组成。
  3. 修复Delaunay条件。新加入的点可能会导致Delaunay条件不成立。如果任何三角形的外接圆包含另一个三角形的一个或多个顶点,则将这两个三角形替换为两个新的三角形。
  4. 删除与超级三角形共享边的所有三角形。

详细了解可参考:Delaunay三角剖分

Voronoi图

Voronoi图是对平面的一种划分,其中每个点的区域包含所有距离该点最近的平面区域。

要在Python中手动实plement它,你可以按照以下步骤操作:

  1. 先构建Delaunay三角剖分。
  2. 对于每个Delaunay三角形,找到其外接圆的圆心,这些圆心就是Voronoi图的顶点。
  3. 对于每对相邻的Delaunay三角形,将它们的外接圆的圆心连接起来,这些连接线就是Voronoi图的边。

代码实现

由于Delaunay三角剖分和Voronoi图的生成是复杂的算法,需要大量的代码才能实现,并且通常需要使用一些现有的库(如SciPy或Matplotlib)以确保效率和准确性。这里给出简略实现代码:

Delaunay三角剖分实现

首先,定义一个函数来计算两点之间的距离:

def distance(a, b):
    return ((a[0] - b[0])**2 + (a[1] - b[1])**2)**0.5

然后,定义一个函数来判断一个点是否在一个三角形的外接圆内:

def in_circumcircle(a, b, c, d):
    ax, ay = a
    bx, by = b
    cx, cy = c
    dx, dy = d
    return (ax - dx)**2 + (ay - dy)**2 < (bx - dx)**2 + (by - dy)**2 < (cx - dx)**2 + (cy - dy)**2

接着,实现Bowyer-Watson算法来生成Delaunay三角剖分:

def delaunay(points):
    super_triangle = [(0, 0), (500, 0), (0, 500)]  # Assumes all points are inside this triangle
    triangles = [super_triangle]  # Start with one triangle that contains all points
    for p in points:
        bad_triangles = []
        for t in triangles:
            if in_circumcircle(t[0], t[1], t[2], p):
                bad_triangles.append(t)
        polygon = []  # Will contain the edges of the polygonal hole
        for t in bad_triangles:
            for i in range(3):
                edge = (t[i], t[(i+1)%3])
                if all((edge[1], edge[0]) not in t2 for t2 in bad_triangles if t2 != t):
                    polygon.append(edge)
        triangles = [t for t in triangles if t not in bad_triangles]  # Remove bad triangles
        for edge in polygon:
            triangles.append([edge[0], edge[1], p])  # Retriangulate the polygonal hole
    triangles = [t for t in triangles if not any(v in super_triangle for v in t)]  # Remove super triangle
    return triangles

Voronoi图实现

根据Voronoi图的定义,一个Voronoi图是由一组点的Delaunay三角剖分的外接圆的中心点(即圆心)构成的。所以,首先我们需要一个函数来计算一个三角形的外接圆的中心:

def circumcenter(a, b, c):
    ax, ay = a
    bx, by = b
    cx, cy = c
    d = 2 * (ax * (by - cy) + bx * (cy - ay) + cx * (ay - by))
    ux = ((ax * ax + ay * ay) * (by - cy) + (bx * bx + by * by) * (cy - ay) + (cx * cx + cy * cy) * (ay - by)) / d
    uy = ((ax * ax + ay * ay) * (cx - bx) + (bx * bx + by * by) * (ax - cx) + (cx * cx + cy * cy) * (bx - ax)) / d
    return (ux, uy)

然后,我们可以使用上面的Delaunay三角剖分算法,为每个生成的三角形计算外接圆的中心,这些中心点就是Voronoi图的顶点:

def voronoi(points):
    triangles = delaunay(points)  # Generate Delaunay triangulation
    voronoi_points = [circumcenter(t[0], t[1], t[2]) for t in triangles]
    return voronoi_points

这个voronoi函数返回的是Voronoi图的顶点,但是Voronoi图还包括边。为了生成边,我们需要找到每对相邻的Voronoi顶点,也就是那些共享一个Delaunay三角形边的顶点。这需要更多的代码,建议直接使用第三方库实现,如SciPy或CGAL。

  • 18
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Delaunay四面体和Voronoi是计算几何学中经常使用的两种形,它们之间存在着密切的关联。 Delaunay四面体是由一组点构成的三维空间中的四面体。具体来说,对于给定的一组点,Delaunay四面体是使得这些点形成四面体的方式中,最符合一定准则的四面体。这个准则被称为Delaunay条件,它要求四面体中不包含其他的点,同时四个顶点的外接圆不包含其他点。Delaunay四面体的存在性是由一个定理保证的,因此它是唯一的。Delaunay四面体在计算机形学、有限元分析等领域中有着广泛的应用。 Voronoi是由一组点构成的平面或空间中的分割。具体来说,对于给定的一组点,Voronoi将空间划分为一系列的区域,每个区域分别与一个点相关联,该点是该区域内离该点最近的点。Voronoi还可以表示为以点为中心的一组圆或球的并集,这些圆或球与彼此相邻的圆或球相切。Voronoi计算机视觉、地理信息系统、计算机网络等领域中广泛应用。 Delaunay四面体和Voronoi之间的关联性体现在它们的对偶性上。具体来说,Delaunay四面体中的顶点对应着Voronoi中的区域的重心。反之,Voronoi中的边是由相应Delaunay四面体中的共享边定义的。这种对偶性使得Delaunay四面体和Voronoi可以相互转换,因此它们在实际应用中常常是一同使用的。 简而言之,Delaunay四面体和Voronoi是计算几何学中对点集的两种不同描述方式,它们通过对偶性相互关联,被广泛应用于许多领域中的空间分析和计算问题。 ### 回答2: Delaunay四面体和Voronoi是计算几何学中的两个重要概念,并且它们彼此密切相关。 Delaunay四面体是一个由一组点构成的特殊三维四面体。在形成Delaunay四面体时,我们要求通过这些点的圆内不包含其他点。因此,Delaunay四面体的特点是其外接圆包含了四面体上的所有点,且没有其他点位于这个外接圆内部。这个特性使得Delaunay四面体在计算几何学和三维重建中得到广泛应用,尤其是在网格生成和三角化方面。此外,Delaunay四面体有一些重要性质,如满足空圆性质和最大角性质等,这些性质使得它成为各种算法的重要基础。 与Delaunay四面体相对应的是Voronoi,也称为Voronoi剖分或泰森多边形。Voronoi根据一组点的位置将空间划分为若干个区域,每个区域包含离其最近的特定点,这些区域称为Voronoi区域。Voronoi的边界由相邻点之间的垂直平分线构成。Voronoi在计算几何学和空间分析中具有广泛的应用,例如网格生成、空间分析和地理信息系统等领域。Voronoi的性质使得它能够提供有关点集之间距离关系和邻近关系的信息,并在许多问题的求解中起到重要作用。 总之,Delaunay四面体和Voronoi可以看作是计算几何学中互为补充的两个概念。Delaunay四面体提供了一种三维空间中点集的表示方法和处理技术,而Voronoi则通过将空间划分为凸多面体来描述点集之间的距离关系。它们都在各自领域内发挥着重要的作用,并在许多计算问题的求解中发挥着重要的作用。 ### 回答3: Delaunay四面体和Voronoi是在计算几何中常用的两个概念。 Delaunay四面体是指在给定一组离散点的情况下,通过连接这些点形成的四面体网格结构。该网格由一组共面的四面体组成,满足以下条件:任意一个四面体的外接圆球不包含其他点。换句话说,Delaunay四面体网格是一种最优的三角化方法,它最大化了所有四面体的最小角度,并且具有唯一性。Delaunay四面体网格在计算机形学、有限元分析等领域中有广泛的应用,能够有效地处理离散点云数据。 Voronoi,又称为泰森多边形、Dirichlet或细胞分割,是指在给定一组点的情况下,通过将空间分割为多个区域的方法。每个点都有一个唯一的区域,该区域包含了离它最近的点。这种分割方式形成了一种形结构,称为VoronoiVoronoi的每个点都是由与它最近的离散点共享的两条边确定的,这些边称为Voronoi边。Voronoi在地理信息系统、像处理、计算机视觉等领域中有广泛的应用,能够提供空间数据的分段、分类和分析功能。 综上所述,Delaunay四面体和Voronoi是在计算几何中常用的两个概念。Delaunay四面体是通过给定一组离散点形成的最优四面体网格结构,而Voronoi是通过给定一组点形成的空间分割。它们在不同领域中有着广泛的应用,能够处理和分析离散点云数据以及提供空间数据的分割和分析功能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值