1734: 镜面对称
时间限制: 1 Sec 内存限制: 32 MB提交: 2 解决: 2
您该题的状态:已完成
[提交][状态][讨论版]
题目描述
给你一个简单多边形,请你判断这个简单多边形是不是镜面对称的。
例如下图两个简单多边形都是镜面对称的。
输入
输入包含多组测试数据。
每组输入的第一行是一个整数N(3<=N<=500),表示简单多边形有N个顶点。
接下来N行,每行输入两个整数x和y,表示简单多边形的某个顶点坐标。
顶点坐标保证按照顺时针顺序输入。
每组输入的第一行是一个整数N(3<=N<=500),表示简单多边形有N个顶点。
接下来N行,每行输入两个整数x和y,表示简单多边形的某个顶点坐标。
顶点坐标保证按照顺时针顺序输入。
输出
对于每组输入,如果此简单多边形是镜面对称的则输出“YES”,否则输出“NO”。
样例输入
3
-1 0
0 1
1 0
样例输出
YES
提示
来源
题目智能推荐 1308 1881 1879 1503 1917 1973 |
#include<stdio.h>
int a[501],b[501],n;
bool flg1(int x,int y,int i)
{
long long da=a[1]-a[i];
long long db=b[1]-b[i];
long long ha=a[1]+a[i];
long long hb=b[1]+b[i];
return -da*(a[x]+a[y])+hb*db+da*ha-db*(b[x]+b[y])==0;
}
int flg2(int x,int y)
{
long long da=a[2]-a[n];
long long db=b[2]-b[n];
long long ha=a[2]+a[n];
long long hb=b[2]+b[n];
return -da*(a[x]+a[y])+hb*db+da*ha-db*(b[x]+b[y])==0;
}
bool judge1(int i)
{
for(int j=i+1;j<=(n+i+1)/2;j++)
{
int x=j,y=n-(j-(i+1));
if(!flg1(x,y,i))
return false;
if((a[y]-a[x])*(b[1]-b[i])!=(a[1]-a[i])*(b[y]-b[x]))
return false;
}
for(int j=2;j<=(i+1)/2;j++)
{
int y=j,x=i-(j-1);
if(!flg1(x,y,i))
return false;
if((a[y]-a[x])*(b[1]-b[i])!=(a[1]-a[i])*(b[y]-b[x]))
return false;
}
return true;
}
bool judge2()
{
if((a[2]-a[1])*(a[2]-a[1])+(b[2]-b[1])*(b[2]-b[1])!=(a[n]-a[1])*(a[n]-a[1])+(b[n]-b[1])*(b[n]-b[1]))
return false;
for(int i=3;i<=(n+2)/2;i++)
{
int x=i,y=n-(i-2);
if(!flg2(x,y))
return false;
if((a[y]-a[x])*(b[2]-b[n])!=(a[2]-a[n])*(b[y]-b[x]))
return false;
}
return true;
}
int main()
{
int i;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++)
scanf("%d%d",&a[i],&b[i]);
bool f=false;
for(i=2;i<=n;i++)
if(judge1(i))
{
f=true;
puts("YES");
break;
}
if(!f)
puts(judge2()?"YES":"NO");
}
return 0;
}