哈喽大家好,最近在刷题中经常用到bfs,今天整理一下给大家分享???????
本篇博客参考于《算法图解》,个人感觉很不错的一本书推荐大家去看看,很适合新手理解!
前言:
《算法图解》的作者在书中说到:在我知道的算法中,图算法应该时最有用的。
确实如此!平常在刷算法题的时候感触很深,很多题目都用到了bfs和dfs,接下来就给大家先带来bfs的解析!
正题:
这个是我画的一张图,非常简单的一个单向图
根据这个图,在这里提出一个问题:若从S到E,那么最短路径是几?
若采取广度遍历,其主要思想是从起始点(s)开始,将其邻近的所有顶点都加到一个队列(FIFO)中去,然后标记下这些顶点离起始顶点的距离为1.最后将起始顶点标记为已访问,今后就不会再访问。然后再从队列中取出最先进队的顶点A,也取出其周边邻近节点,加入队列末尾,将这些顶点的距离相对A再加1,最后离开这个顶点A。依次下去,直到队列为空为止。
广度遍历过程可以用下面式子表示:
I步: S->A S->B
2步: A->C A->D B->E
我们可以看出来,最快需要两步我们就可以到E了,也就是:S->A->E
广度优先搜索让你能够找出两样东西之间的最短距离,广度优先搜索是一种用于图的查找算法,可帮助回答两类问题。
第一类问题:从节点A出发,有前往节点B的路径吗?
第二类问题:从节点A出发,前往节点B的哪条路径最短?
使用这种算法将搜遍整个图,找到到达终点的最短路径。这就是广度优先搜索算法。
结合以上所说的,我们得出一个重要结论:
广度优先搜索不仅查找从A到B的路径,而且找到的是最短的路径。(这个很重要,bfs第一次找到的到达目标的路径就是最短路径!)
在代码实现方面:
①dfs需要用到队列,当一个元素被遍历完时,则与它相连的节点应该被顺序送入队列,然后再从队列中取出队首进行遍历操作。
②需要一个表,来记录每一个图节点到达图顶点的距离
下面给出代码:
import java.awt.font.GraphicAttribute;
import java.util.*;
public class Bfs {
static HashMap<Character, LinkedList<Character>> graph;
static HashMap<Character, Integer> dist;
//bfs
private static void bfs(HashMap<Character, LinkedList<Character>> graph,HashMap<Character, Integer> dist,char start)
{
Queue<Character> q=new LinkedList<Character>();
q.add(start);//将s作为起始顶点加入队列
dist.put(start, 0); //dist表是用来记录每一个图节点到顶点的距离
int i=0;
while(!q.isEmpty()) //队列不为空就一直遍历
{
char top=q.poll();//取出队首元素
i++;
System.out.println("The "+i+"th element:"+top+" Distance from S is:"+dist.get(top));
int d=dist.get(top)+1;//得出其周边还未被访问的节点的距离,例如:d(S->A)就是0+1=1
for (Character c : graph.get(top)) {
if(!dist.containsKey(c))//如果dist中还没有该元素说明还没有被访问
{
dist.put(c, d); //将新访问到的元素与其和顶点相距的距离信息存入 dist
q.offer(c); //将新访问到的元素入队
}
}
}
}
public static void main(String[] args) {
// s顶点的邻接表
LinkedList<Character> list_s = new LinkedList<Character>();
list_s.add('A');
list_s.add('B');
LinkedList<Character> list_a = new LinkedList<Character>();
list_a.add('C');
list_a.add('D');
LinkedList<Character> list_b = new LinkedList<Character>();
list_b.add('D');
list_b.add('E');
LinkedList<Character> list_c = new LinkedList<Character>();
list_c.add('E');
LinkedList<Character> list_d = new LinkedList<Character>();
list_c.add('E');
//构造图
graph = new HashMap<Character, LinkedList<Character>>();
graph.put('S', list_s);
graph.put('A', list_a);
graph.put('B', list_b);
graph.put('C', list_c);
graph.put('D', list_d);
graph.put('E', new LinkedList<Character>());
//调用
dist = new HashMap<Character, Integer>();
bfs(graph, dist, 'S');
}
}
每天都再向目标努力,加油!!!?????