前言:
被这个题目困扰了两天???,第一次做记忆化搜索算法题,好难!
看了无数大佬的题解终于弄明白了,不容易!???
这里我特别喜欢一位大佬的题解,大家可以去看一下,写的很棒!
给出链接地址:推荐优质解答
题目源地址:蓝桥杯2013年B组:地宫取宝
题目:
问题 1436: [蓝桥杯][2014年第五届真题]地宫取宝
时间限制: 1Sec 内存限制: 128MB 提交: 327 解决: 76
题目描述
X 国王有一个地宫宝库。是 n x m 个格子的矩阵。每个格子放一件宝贝。每个宝贝贴着价值标签。
地宫的入口在左上角,出口在右下角。
小明被带到地宫的入口,国王要求他只能向右或向下行走。
走过某个格子时,如果那个格子中的宝贝价值比小明手中任意宝贝价值都大,小明就可以拿起它(当然,也可以不拿)。
当小明走到出口时,如果他手中的宝贝恰好是k件,则这些宝贝就可以送给小明。
请你帮小明算一算,在给定的局面下,他有多少种不同的行动方案能获得这k件宝贝。输入
输入一行3个整数,用空格分开:n m k (1< =n,m< =50, 1< =k< =12)
接下来有 n 行数据,每行有 m 个整数 Ci (0< =Ci< =12)代表这个格子上的宝物的价值输出
要求输出一个整数,表示正好取k个宝贝的行动方案数。该数字可能很大,输出它对 1000000007 取模的结果。
样例输入
2 3 2 1 2 3 2 1 5
样例输出
14
思路:
思路是:搜索+动态规划,也就是传说中的记忆化搜索算法。
先来贴出记忆化算法的解释:记忆化搜索:算法上依然是搜索的流程,但是搜索到的一些解用动态规划的那种思想和模式作一些保存。
一般说来,动态规划总要遍历所有的状态,而搜索可以排除一些无效状态。
更重要的是搜索还可以剪枝,可能剪去大量不必要的状态,因此在空间开销上往往比动态规划要低很多。
记忆化算法在求解的时候还是按着自顶向下的顺序,但是每求解一个状态,就将它的解保存下来,
以后再次遇到这个状态的时候,就不必重新求解了。
首先运用动态规划的形式进行深搜:
其中i 和 j 代表坐标,k代表当前手中所拿宝物数目,v代表手中价值最大的宝物
主要思路就是用动态规划进行深搜,然后用一个高维数组dp[i][j][num][max]来进行记录,避免重复计算。这个四维数组比较难以理解,一开始我看到是懵逼的?????!不过其实你只需要知道每个维数代表一个条件,四个合在一起代表的是当前情况下能够成功的情况,这里dp中,四个参数各代表坐标X,Y、手中持有宝物数量、手中宝物的最大值
代码:
import java.util.Scanner;
public class 地宫取宝 {
private static long N = 1000000007;
private static int n,m,k;
private static int map[][] = new int[50][50]; //记录迷宫
//dp中,四个参数各代表坐标X,Y、手中持有宝物数量、手中宝物的最大值
private static int dp[][][][] = new int[50][50][15][15];
public static void init(){
for(int i=0;i<50;i++){
for(int j=0;j<50;j++){
for(int k=0;k<15;k++){
for(int l=0;l<15;l++)
dp[i][j][k][l] = -1;
}
}
}
}
public static int DFS(int x, int y, int num, int max){
//记忆化搜索,首先先检查该路径是否已经走过
if(dp[x][y][num][max+1]!=-1){
//说明已经走过这个条路径,就不用再次走
//因为宝物有可能为0所以定义max时用最小值-1 这就导致无法作为下标使用
//实际上如果测试数据中宝物价值没有0 ,将所有的+1 去掉也是可以的
//这里的话如果去掉肯定是有些数据不对的,不信可以提交试一下,根本过不了
return dp[x][y][num][max+1];
}
//到达边界
if(x==n-1 && y==m-1){
/*到达左下角有两种情况成功
* 1.当前手中的数量满足k,这时不拿会成功
* 2.当前手中的数量刚好差一个,然后地下的宝物大于手中的max,这时也会成功
*/
if(num==k || (num==k-1 && max<map[x][y])){
return dp[x][y][num][map[x][y]]=1;
}else{
return dp[x][y][num][max+1]=0; //不满足条件,这里的max+1原因同上
}
}
/*拿和不拿的两种情况:
* 1.手中的max大于地下宝物价值,此时可拿可不拿
* 2.手中的max小于地下宝物价值,此时只能不拿
*/
long s = 0;
if(x<n-1){//向下搜索
if(max<map[x][y]){//可拿可不拿,不拿的情况可以想成是不符合条件所以不拿,这样来说就可以将其和不能拿一起处理
s += DFS(x+1, y, num+1, map[x][y]);
}
s += DFS(x+1, y, num, max);//不拿,与不能拿时写在一起,这点很重要!
s%=N;
}
if(y<m-1){//向右搜索
if(max<map[x][y]){//可拿可不拿,不拿的情况可以想成是不符合条件所以不拿,这样来说就可以将其和不能拿一起处理
s += DFS(x, y+1, num+1, map[x][y]);
}
s += DFS(x, y+1, num, max);//不拿,与不能拿时写在一起,这点很重要!
s%=N;
}
return dp[x][y][num][max+1]=(int) s;
}
public static void main(String[] args) {
Scanner scan = new Scanner(System.in);
n = scan.nextInt();
m = scan.nextInt();
k = scan.nextInt();
for(int i=0; i<n; i++){
for(int j=0; j<m; j++){
map[i][j] = scan.nextInt();
}
}
init();
DFS(0, 0, 0, -1);
System.out.println(dp[0][0][0][0]);
}
}