06 社团结构
- 6.1社团结构研究的意义
- 6.2社团结构的定义
- 6.3检验划分算法的网络及划分结果比较
- 6.4社团划分探测算法
- 6.5Q函数及其优化算法
- 6.6重叠社团的划分算法
- 6.7加权网上的社团结构
6.1社团结构研究的意义
- 实际系统中的社团结构
- 在人际关系网中, 社团可能是按照人的职业、年龄等因素形成
- 在引文网中,不同社团可能代表了不同的研究领域
- 在万维网中,不同社团可能表示了不同主题的主页
- 社团结构研究具有重要意义
社团结构是中观尺度网络性质的体现,对网络中社团结构的研究是了解整个网络结构和功能的重要途径。
6.2 社团结构的定义
- 社团结构的类型
- 一个节点仅属于某一个社团(非重叠社团)
- 一个节点可能属于多个社团(重叠社团)
- 仅给出某些节点的社团属性(非完全分类)
- 社团结构的描述性定义3
- 社团结构的基本假设(连通性、局部相对稠密的连接密度)
社团结构(不重叠的社团)是对网络中节点的分组,组内连接相对紧密而组间连接相对稀疏。
- 社团结构的基本假设(连通性、局部相对稠密的连接密度)
- 社团结构的数学描述
- 派系(Clique):三个或三个以上的节点组成的全连通子图。
- k-core子图(k-core-subgraph):子图中的每个节点与子图内的其他节点至少有k条边相连。
- k-派系社团(k-Clique Community):网络中由所有彼此连通的k-派系构成的集合。
- LS集(LS-set):一个LS集是一个由节点构成的集合,它的任何真子集与该集合内部的连边都比与该集和外部的连边多。
- 社团结构的比较性定义4
- 强社团的定义为:子图V中任何一个顶点与V内部顶点连接的度大于其与V外部顶点连接的度。
- 弱社团的定义为:子图V中所有顶点与V内部顶点的度之和大于V中所有顶点与V外部顶点连接的度之和。
6.3 检验划分算法的网络及划分结果比较
- 算法网络
- 人工网络
- GN benchmark5
A)GN经典人造网
常用的人造网是由128个节点构成的网络,这128个节点分成4组,构成4个社团,每个社团包含32个节点。每个节点度的期望值为16, Z i n Z_{in} Zin表示节点与社团内部节点连边数目的期望值, Z o u t Z_{out} Zout表示节点与社团外部节点连边数目的期望值,从而 Z i n Z_{in} Zin + + + Z
- GN benchmark5
- 人工网络