题目描述
N<k时,root(N,k) = N,否则,root(N,k) = root(N',k)。N'为N的k进制表示的各位数字之和。输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000)
输入描述:
每组测试数据包括一行,x(0<x<2000000000), y(0<y<2000000000), k(2<=k<=16)
输出描述:
输入可能有多组数据,对于每一组数据,root(x^y, k)的值
示例1
输入
复制
4 4 10
输出
复制
4
#include <stdio.h>
#include <cstdio>
#include <string>
#include <string.h>
#include <math.h>
#include <algorithm>
#include <iostream>
using namespace std;
//通过一些数学推导得到result = N % (k - 1) 的结论,然后用快速幂取模算法求得答案
long long int QuickPow(int x,int y,int k) //快速幂模版
{
if(y==0)
{
return 1;
}
if(y%2==1)
{
return x*QuickPow(x, y-1, k)%k;
}
else
{
int res=QuickPow(x, y/2, k)%k;
return res*res%k;
}
}
int main(){
int x,y,k;
while(scanf("%d%d%d",&x,&y,&k)!=EOF){
int res=QuickPow(x,y,k-1);
if(res==0)
res=k-1;
printf("%d",res);
}
}
快速幂:又叫二分幂(a^b),1、若b是奇数,那么有a^b=a*(a^(b-1)) 2、若b是偶数,那么有a^b=(a^(b/2))*(a^(b/2))