一.题目描述:
N<k时,root(N,k) = N,否则,root(N,k) = root(N',k)。N'为N的k进制表示的各位数字之和。输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000)
输入:
每组测试数据包括一行,x(0<x<2000000000), y(0<y<2000000000), k(2<=k<=16)
输出:
输入可能有多组数据,对于每一组数据,root(x^y, k)的值
样例输入: 4 4 10
样例输出: 4
二.题目分析
(1)采用直接模拟的方式,先计算X^Y,然后在进制转换,但是大数据(x^y)将超出范围。
(2)数学公式推导
由上述分析,我们希望找到Nr=N%(k-1)。
当Nr等于0时,处于边界条件,Nr=k-1。
(3)关于快速幂的计算
二分求幂参考:http://blog.csdn.net/prstaxy/article/details/8740838
快速幂取模参考:http://blog.sina.com.cn/s/blog_8619a25801010wcy和http://blog.csdn.net/yangyafeiac/article/details/8707079
三.代码
#include <stdio.h>
#include <stdlib.h>
long long QuickPow(long long n,long long base,long long k)
{
long long ans=1;
while(n)
{
if(n&1)
ans=(base*ans)%k;
base =(base*base)%k;
n>>=1;
}
return ans;
}
int main()
{
long long x,y,k,z;
while(scanf("%lld%lld%lld",&x,&y,&k)!=EOF)
{
z=QuickPow(y,x,k-1);
if(z==0)
z=k-1;
printf("%lld\n",z);
}
return 0;
}