九度OJ 题目1085:求root(N, k)



一.题目描述:
    N<k时,root(N,k) = N,否则,root(N,k) = root(N',k)。N'为N的k进制表示的各位数字之和。输入x,y,k,输出root(x^y,k)的值 (这里^为乘方,不是异或),2=<k<=16,0<x,y<2000000000,有一半的测试点里 x^y 会溢出int的范围(>=2000000000)
输入:
    每组测试数据包括一行,x(0<x<2000000000), y(0<y<2000000000), k(2<=k<=16)
输出:
    输入可能有多组数据,对于每一组数据,root(x^y, k)的值
样例输入: 4 4 10
样例输出: 4

二.题目分析

(1)采用直接模拟的方式,先计算X^Y,然后在进制转换,但是大数据(x^y)将超出范围。

(2)数学公式推导

由上述分析,我们希望找到Nr=N%(k-1)。

当Nr等于0时,处于边界条件,Nr=k-1。

(3)关于快速幂的计算

二分求幂参考:http://blog.csdn.net/prstaxy/article/details/8740838

快速幂取模参考:http://blog.sina.com.cn/s/blog_8619a25801010wcyhttp://blog.csdn.net/yangyafeiac/article/details/8707079

三.代码

#include <stdio.h>
#include <stdlib.h>
long long QuickPow(long long n,long long base,long long k)
{
    long long ans=1;

    while(n)
    {
        if(n&1)
            ans=(base*ans)%k;
        base =(base*base)%k;
        n>>=1;
    }
    return ans;
}
int main()
{
    long long x,y,k,z;

    while(scanf("%lld%lld%lld",&x,&y,&k)!=EOF)
    {

        z=QuickPow(y,x,k-1);

        if(z==0)
            z=k-1;

        printf("%lld\n",z);
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值