BFS——玛雅人的密码

这篇博客介绍了一个关于玛雅密码的编程问题,其中字符串必须通过移动相邻数字找到连续的2012组合。文章提供了一种利用宽度优先搜索(BFS)算法解决此问题的方法,详细阐述了代码实现过程,包括状态定义、字符串交换函数以及避免重复状态的策略。最终,代码在给定的测试用例中成功找出了解密所需的最小移位次数。
摘要由CSDN通过智能技术生成

题目描述

玛雅人有一种密码,如果字符串中出现连续的2012四个数字就能解开密码。给一个长度为N的字符串,(2=<N<=13)该字符串中只含有0,1,2三种数字,问这个字符串要移位几次才能解开密码,每次只能移动相邻的两个数字。例如02120经过一次移位,可以得到20120,01220,02210,02102,其中20120符合要求,因此输出为1.如果无论移位多少次都解不开密码,输出-1。

输入描述:

输入包含多组测试数据,每组测试数据由两行组成。
第一行为一个整数N,代表字符串的长度(2<=N<=13)。
第二行为一个仅由0、1、2组成的,长度为N的字符串。

输出描述:

对于每组测试数据,若可以解出密码,输出最少的移位次数;否则输出-1。

示例1

输入

5
02120

输出

1

思路

设置状态(string str,int num),str是当前的字符串,num是累计交换字符次数。

通过BFS,对当前字符串进行str.size()-1次变换,得到str.size()-1 个状态,对这些状态再次进行str.size()-1次变换,依次类推。且若出现重复出现过的字符串,则跳过。(用map来标记)

 

代码

#include<iostream>
#include<cstdio>
#include<queue>
#include<string>
#include<map>
using namespace std;

struct status{
    string str;
    int num;
    status(string s,int m)
    {
        str=s;
        num=m;
    }
};

string exchange(string str,int i)
{
    char c=str[i];
    str.erase(i,1);
    str.insert(i+1,1,c);
    return str;
}

int BFS(status str)
{
    map<string,int> mp;
    mp.clear();
    queue<status> myqueue;
    myqueue.push(str);
    int len=str.str.size();
    while(!myqueue.empty())
    {
        status current=myqueue.front();
        myqueue.pop();
        int i=current.str.find("2012");
        if(i!=-1)
        {
           return current.num; 
        }
        if(mp[current.str])
            continue;
        mp[str.str]=1;
        for(int i=0;i<len-1;i++)
        {
            status next(exchange(current.str,i),current.num+1);
            myqueue.push(next);
        }
    }
    return -1;
}

int main()
{
    int N;
    string str;
    while(cin>>N)
    {
        if(N==0)
            break;
        cin>>str;
        status s(str,0);
        cout<<BFS(s)<<endl;
    }
    return 0;
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值