排序算法-基数排序

排序算法-基数排序

算法思想

基数排序是采用多关键字排序思想(即基于关键字各位的大小进行排序地),借助“分配”、“收集”两种操作对单逻辑关键字进行排序。基数排序又分为最高位优先(MSD)排序和最低位优先(LSD)排序。

以r为基数的最低位优先基数排序过程:假设线性表是由节点序列 a 0 , a 1 . . . a n − 1 a_{0}, a_{1}...a_{n-1} a0,a1...an1构成,每个节点 a j a_{j} aj的关键字由 d d d元组 ( k j d − 1 , k j d − 2 , . . . , k j 1 , k j 0 ) (k^{d-1}_{j}, k^{d-2}_{j},...,k^{1}_{j},k^{0}_{j}) (kjd1,kjd2,...,kj1,kj0)组成,其中 0 < = k j i < = r − 1 0<=k^{i}_{j}<=r-1 0<=kji<=r1(0<=j<n,0<=i<=d-1)。

这段话要如何理解呢?以十进制数排序为例。其基数就为 0 0 0~ 9 9 9,r=10,假设线性表中一个元素的数值为384,该关键字就由3元组 ( 3 , 8 , 4 ) (3,8,4) (3,8,4)组成,即由百位、十位、个位组成,其d值就为3。

在排序的过程中,需要使用r个队列 Q 0 , Q 1 , . . . , Q r − 1 Q_{0},Q_{1},...,Q_{r-1} Q0,Q1,...,Qr1排序过程如下:

分配:开始时,把 Q 0 , Q 1 , . . . , Q r − 1 Q_{0},Q_{1},...,Q_{r-1} Q0,Q1,...,Qr1各个队列置为空队列,然后依次考察线性表中的每一个结点 a j a_{j} aj,如果 a j a_{j} aj的关键字 k j i = k k^{i}_{j}=k kji=k,就把 a j a_{j} aj放入 Q k Q_{k} Qk队列中。

收集:把 Q 0 , Q 1 , . . . , Q r − 1 Q_{0},Q_{1},...,Q_{r-1} Q0,Q1,...,Qr1各个队列中的结点首尾相接,得到新的结点序列,从而组成新的线性表。

基数排序的过程

基数从最低位开始从小到大收集
在这里插入图片描述
基数从最低位开始从大到小收集。
在这里插入图片描述

基数排序完整代码实现(输出结果升序):
package com.sort;

import java.util.LinkedList;
import java.util.Queue;

public class BaseSort {
    public static void main(String[] args) {
        int[] nums = {3,89,4,53,6,825,900,0,1000,53};
        basesort(nums,nums.length);
        System.out.println("最终输出结果:");
        for(int num:nums){
            System.out.print(num+" ");
        }


    }
    public static void basesort(int[] nums,int len){
        int max = 0; //寻找待排序数组中的最大值,以确定位数d
        for(int num:nums)
            max = Math.max(max,num);
        int d = GetNum_d(max);
        //建立分配和收集队列,十进制数总共需要0~9,十个队列
        Queue<Integer>[] queues = new Queue[10];
        //初始化这10个队列
        for(int i=0;i<10;++i){
            queues[i] = new LinkedList<>();
        }
        //根据位数d来确定 分配和收集 的趟数
        for(int i=0;i<d;++i){
            //分配
            for(int num:nums){
                int temp = num;
                num /= (int)Math.pow(10,i);
                queues[num%10].offer(temp);
            }
            //收集,降序排列所以从最低位开始收集
            int k = 0;
            for(int j=0;j<10;++j){
                while(!queues[j].isEmpty() && k<len){
                    nums[k++] = queues[j].poll();
                }
            }
            System.out.printf("第 %d 趟收集之后的结果:\n",i);
            for(int num:nums){
                System.out.print(num+" ");
            }
            System.out.println();
        }
    }
    public static int GetNum_d(int num){
        int d = 1;
        while(num/10!=0){
            num /=10;
            d++;
        }
        return d;
    }

}

输出结果:
在这里插入图片描述

复杂度分析

主要针对上述代码实现,不同语言分析会有所不同。

时间复杂度
一趟分配的时间复杂度为 O ( n ) O(n) O(n),一趟收集的时间复杂度为 O ( r + n ) O(r+n) O(r+n),总共需要d趟分配收集,时间复杂度为 O ( d ( 2 n + r ) ) O(d(2n+r)) O(d(2n+r)),即 O ( d ( n + r ) ) O(d(n+r)) O(d(n+r)).

空间复杂度
需要r个辅助队列,r个辅助队列每趟最多需要入队n次。所以空间复杂度为 O ( r + n ) O(r+n) O(r+n)

稳定性:稳定。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

山风wind

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值