二叉搜索树是二叉树的一种特殊情况。
先总结二叉搜索树
part 1. 二叉搜索树的最近公共祖先
一开始看到这道题,思路不太清楚,然后对着前序遍历的结果和中序遍历的结果琢磨了一遍,发现了规律,才勉强写出来比较冗余的代码(后面有比较好的思路)
思路:得到中序遍历和先序遍历的结果后,分两种情况判断公共节点。情况1: p q被根节点分开, 直接返回根节点;情况2: p q在根节点同一侧,遍历先序遍历的结果,返回最先在pq之间的节点
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
# 先把特殊情况排除
if not root:
return
self.mi_li = []
self.pre_li = []
# 遍历
self.middleTrace(root)
self.preTrace(root)
if len(self.mi_li)<4:
return self.pre_li[0]
mi_ = min(p.val,q.val)
ma_ = max(p.val,q.val)
# 情况1 根节点两端
if self.pre_li[0].val in range(mi_,ma_+1):
return self.pre_li[0]
# 情况2 根节点一侧
for i in self.pre_li:
if i.val in range(mi_,ma_+1):
return i
def middleTrace(self,root):
if not root:
return
self.middleTrace(root.left)
self.mi_li.append(root)
self.middleTrace(root.right)
def preTrace(self, root):
if not root:
return
self.pre_li.append(root)
self.preTrace(root.left)
self.preTrace(root.right)
另一种思路:在递归中判断 不类似于树的遍历(前中后)。中点是如何确定子问题和父问题之间的关系。
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
if root.val == p.val || root.val == q.val:
return root
if root.val > p.val && root.val < q.val:
return root
if root.val < p.val && root.val > q.val:
return root
if root.val < p.val && root.val < q.val:
return lowestCommonAncestor(root.right, p, q)
return lowestCommonAncestor(root.left, p, q)
part 2. 二叉树的最近公共祖先
思路分析:寻找子问题和父问题的关系,可以从最简单的子问题开始。假设一棵树只有根节点,左节点和右节点,公共祖先的定义是,左子树或者右子树包括p、q两个节点。最近的公共祖先的定义是,左子树或者右子树分别包括p、q两个节点。为了满足最近的要求,需要向有包括p或q的节点进行下一步递归。
代码如下:
def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode':
if not root:
return
if root==p or root == q:
return root
#如果运行到这里来了 那看看左右子树 那边包含的p 或者q
left = self.lowestCommonAncestor(root.left, p, q)
right = self.lowestCommonAncestor(root.right, p, q)
# 如果这个刚好是最近的公共祖先 直接返回它
if left and right:
return root
# 如果左子树没有包括,那么就右子树看看,否则就进左子树看看
return right if not left else left