给定一个二叉搜索树, 找到该树中两个指定节点的最近公共祖先。
百度百科中最近公共祖先的定义为:“对于有根树 T 的两个结点 p、q,最近公共祖先表示为一个结点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以是它自己的祖先)。”
例如,给定如下二叉搜索树: root = [6,2,8,0,4,7,9,null,null,3,5]
示例 1:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 8
输出: 6
解释: 节点 2 和节点 8 的最近公共祖先是 6。
示例 2:
输入: root = [6,2,8,0,4,7,9,null,null,3,5], p = 2, q = 4
输出: 2
解释: 节点 2 和节点 4 的最近公共祖先是 2, 因为根据定义最近公共祖先节点可以为节点本身。
说明:
所有节点的值都是唯一的。
p、q 为不同节点且均存在于给定的二叉搜索树中。
题解思路:
二叉树的最近公共祖先LCA问题:
p q 在树上的分布
1、p q有一个或者都是根节点
在左右子树的情况
1)p q不,在左右子树上,也就是p q不存在,返回null
2、p q 都在左子树上或者都在右子树数,返回所在子树的根节点
3、p q 分别在左右子树上 返回根节点
由于二叉搜索树的特性,我们只需要根据p q的值和根节点比较,就可以判断去哪个子树上去搜索
1、p q 都小于根节点 那么去左子树上搜索
2、p q都大于根节点 那么去右子树上搜索
否则最近公关祖先就是根节点。
public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) {
if(null == root || p==root || q == root){
return root;
}
//如果p q 在右子树上
if(p.val > root.val && q.val > root.val){
return lowestCommonAncestor(root.right,p,q);
}
//如果p q 在左子树上
if(p.val < root.val && q.val < root.val){
return lowestCommonAncestor(root.left,p,q);
}
return root;
}