(三)LangChain4j模型分类和使用

本文介绍了LangChain4j中的不同语言模型,如ChatLanguageModel,其支持Anthropic、OpenAI等多家公司的API,强调了灵活性和连接外部模型的能力。同时提到了EmbeddingModel、ImageModel和ModerationModel的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一.LanguageModel语言模型

该模型的API比较简单,接受字符串作为输入并返回字符串作为输出,这种模型已经被

ChatLanguageModel取代,所以LangChain4j中也不在扩展对LanguageModel的支持,

在此处也不过多描述。

二.ChatLanguageModel聊天语言模型

是LangChain4j中底层的API,提供了最大的功能和灵活性,可以连接市面上的很多语言模型:

1.Anthropic

Anthropic是一家位于美国加州旧金山的人工智能初创公司,成立于2021年。

AnthropicChatModel使用如下:

引入依赖

获取密钥,https://console.anthropic.com/settings/keys ,目前对中国用户不开放

2.OpenAI

一家非营利性人工智能研究机构,致力于推进人工智能领域的发展和应用。

OpenAiChatModel的使用如下:

提供测试用的密钥demo,可以实现基本功能,更多功能需要付费申请密钥。

3.MistralAI

致力于人工智能领域的公司,密钥需要付费使用

4.Ollama

Ollama是一个开源的大型语言模型服务工具,它帮助用户快速在本地运行大模型。

要连接Ollama提供的大模型,必须在本地安装并运行一个大模型,例如 Llama 2、orca-mini等。

library

.....

三.OpenAiStreamingChatModel

具有聊天接口的的语言模型,能够实现流式输出

聊天语言模型中的讲解的公司也都能实现该功能,以OpenAi的举例:

四.EmbeddingModel 嵌入式模型

将文本转换为向量,用于相似性检索

结合数据库来保留原始数据之间的关系和语义信息

1.Milvus

AllMiniLmL6V2EmbeddingModel结合InMemoryEmbeddingStore

五.ImageModel图像模型

生成和编辑图像,可以根据文本生成图像

1.OpenAi

OpenAiImageModel

目前尚未用到,后面再进行补充

六.ModerationModel 审核模型

审核模型,可以过滤一些问题,例如检查文本是否包含有害内容

1.OpenAi

OpenAiModerationModel结合AiService(后面会讲)

七.ScoringModel评分模型

尚未研究,等研究之后在进行补充

<think>好的,用户想了解langchain4j与ONNX的集成使用示例。首先,我需要确认langchain4j是否官方支持ONNX集成。查阅官方文档社区资源,发现目前langchain4j主要专注于与Java生态的集成,比如HuggingFaceOpenAI,但并没有直接提到ONNX的支持。 接下来,考虑可能的间接集成方法。ONNX模型通常需要运行时环境,比如ONNX Runtime。或许用户可以在langchain4j中加载ONNX模型,并通过自定义代码进行调用。例如,使用ONNX Runtime的Java API加载模型,然后在处理链中使用它。 然后,需要验证这种方法的可行性。查找相关示例,发现虽然langchain4j没有直接示例,但ONNX Runtime的Java文档提供了模型加载推理的代码片段。可以将这些代码封装成自定义工具或模块,再集成到langchain4j的流程中。 另外,用户可能需要了解如何将ONNX模型应用于自然语言处理任务,比如文本嵌入或分类。这里需要确保模型输入输出与langchain4j的接口兼容,可能需要数据预处理后处理步骤。 最后,总结可能的步骤:加载ONNX模型,创建自定义工具,集成到langchain4j链中,并处理输入输出格式。同时,提醒用户注意依赖管理性能优化,比如使用GPU加速ONNX推理。</think>关于LangChain4j与ONNX的集成,目前官方未提供直接支持的文档,但可通过以下方式实现间接集成: ### 1. ONNX模型加载基础 使用ONNX Runtime Java API加载模型: ```java import ai.onnxruntime.*; OrtEnvironment env = OrtEnvironment.getEnvironment(); OrtSession.SessionOptions options = new OrtSession.SessionOptions(); OrtSession session = env.createSession("model.onnx", options); ``` ### 2. 创建自定义工具类 ```java public class ONNXClassifier implements Tool { private final OrtSession session; public ONNXClassifier(String modelPath) throws OrtException { OrtEnvironment env = OrtEnvironment.getEnvironment(); this.session = env.createSession(modelPath, new OrtSession.SessionOptions()); } @Override public String execute(String input) { // 预处理输入->运行推理->后处理输出 float[] result = runInference(input); return postProcess(result); } } ``` ### 3. 集成到LangChain4j ```java ONNXClassifier classifier = new ONNXClassifier("text-classifier.onnx"); Assistant assistant = AiServices.builder(Assistant.class) .tools(classifier) .chatLanguageModel(OpenAiChatModel.withApiKey("demo")) .build(); ``` ### 4. 输入/输出处理示例 文本向量化预处理: $$ \text{Embedding}(x) = \text{ONNX}( \text{Tokenizer}(x) ) $$ 其中Tokenizer需要与模型训练时保持一致[^1]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值