文献阅读(三):Saliency Detection for Stereoscopic 3D Images in the Quaternion Frequency Domain

  1. Saliency Detection for Stereoscopic 3D Images in the Quaternion Frequency Domain

摘要

最近的研究表明,人的双目和单目之间存在着显著的区别。与二维显著性检测模型相比,三维图像显著性检测是一项更具挑战性的任务。本文提出了一种S3D图像的显著性检测模型。该模型的最终显著性映射由局部四元数傅里叶变换(QFT)稀疏特征和全局QFT对数- Gabor特征构成。更具体地说,局部QFT特征通过分析相似patch的位置来度量S3D图像的显著性。使用稀疏表示方法选择相似的patch。通过带通滤波器增强边缘梯度,生成全局显著图。

  1. 本文方法:  

本文提出了一种用于S3D显著性检测的全局和局部显著性分析模型。该模型通过特征检测和四元数低特征的比较,生成显著图。在局部显著特征提取中,与现有方法不同的是采用了中心环绕先验的方法。具体来说,我们使用这个先验来对稀疏算法选择的patch进行加权,然后比较所有加权选定的patch和所有其他patch的,从而得到一个patch的中心-环绕特性。

提出的QFT显著性模型包括三个基本阶段:QFT局部特征提取;QFT log-Gabor特征提取,显著性映射融合。

对于局部QFT patch低频稀疏表示方法,首先将视差patch构造成一个四元数矩阵,以及所有颜色通道映射。然后,用Lasso算法选择相似的具有代表性的patch。最后,利用局部QFT稀疏特征构造了该模型的显著性图。在全局QFT显著性检测中,首先利用增强的颜色通道梯度图和视差图梯度图构建整个图像的四元数矩阵。通过两个特征图的加权线性组合得到最终的显著性图。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值