基础算法——前缀和

本文介绍了前缀和作为解决区间问题的基础手段,详细阐述了前缀和的思想、实现代码以及二维前缀和的应用。通过例题解析,展示了如何利用前缀和在O(1)时间内完成区间和的查询,对比了朴素解法和线段树等其他高级解法。
摘要由CSDN通过智能技术生成

前缀和是解决区间问题的一个基础手段,前缀和的思想也可以用来解决一些其他的问题

那么前缀和到底是什么呢?

目录

例题引入

解决方法:

1.朴素解法(暴力出奇迹)

2.前缀和

3.线段树(还有一些乱七八糟dalao的解法)

前缀和

1.思想

2.代码

3.二维前缀和


例题引入

给定一个数列an,再有Q次的询问,每次询问给出两个区间的端点l,r,请你求出这一段区间所有数之和

数据保证在int内,区间长度与Q的乘积>=10^9

 

解决方法:

1.朴素解法(暴力出奇迹)

暴力有分,能拿就拿~

for(int t=1;t<=Q;t++)
{
    int l=read(),r=read();
    for(int i=l,i<=r;i++)
        ans+=a[i];
}

2.前缀和

遇到这种q次询问,每次查询或者更新的问题,思路就应该从“下往上”想

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值