POJ 1845 Sumdiv: 分解质因数 + 母函数思想 + 逆元 + 分治

首先我们来读题

Consider two natural numbers A and B. Let S be the sum of all natural divisors of A^B. Determine S modulo 9901 (the rest of the division of S by 9901).

再注意一下数据范围

(0 <= A,B <= 50000000)

中文意思也不难理解

A^{B}的所有约数之和mod 9901 (0 <= A,B <= 50000000)

题目很短,也没有什么挖坑的地方.

 

分析

A进行质因数分解,可表示为p_{1}^{c_{1}}*p_{2}^{c_{2}}*...*p_{n}^{c_{n}}

A^{B}可表示为p_{1}^{c_{1} * B}*p_{2}^{c_{2} * B}*...*p_{n}^{c_{n}*B}

不难理解,A^{B}的所有约数可用集合\left \{ x|x= p_{1}^{k_{1}}*p_{2}^{k_{2}}*...*p_{n}^{k_{n}} , (1\leqslant i\leqslant n,0\leqslant k_{i}\leqslant B*c_{i}) \right \}表示.

其实就是所有k_{i}取值的组合.这是一个很明显的母函数思想

进而可将A^{B}的所有约数之和转化为

\left ( 1+p_{1}+p_{1}^{2}+...+p_{1}^{B*c_{1}} \right )*\left ( 1+p_{2}+p_{2}^{2}+...+p_{2}^{B*c_{2}} \right )*...*\left ( 1+p_{n}+p_{n}^{2}+...+p_{n}^{B*c_{n}} \right )\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \left ( 1 \right )   
 

解法1:

对于\left ( 1 \right )式,其中的每一项都是一个等比数列,我们可以利用等比数列的通向公式求解,但涉及到取模和除法的问题,这里需要一些特殊的转化.

还可以想到一个方法就是等比数列其实可以利用分治的方法求解.

对于等比数列1+p+p^{2}+...+p^{n},当n为奇数(即含有偶数项)时,可将其转化为\left ( 1+p+p^{2}+...+p^{\frac{n}{2}} \right )+\left ( 1+p+p^{2}+...+p^{\frac{n}{2}} \right )*p^{\frac{n}{2}+1},其实就是对后半段提取了一个公因式p^{\frac{n}{2}+1},

n为偶数时也同理.

我们可以根据这种转化来将大问题转化为小问题,也就是分治.

 

解法2:

用等比数列的通项公式快速求解,但是需要注意很多细节,比如运算中设计除法,数值较大容易溢出等.

这里直接引入逆元里的变换模值方法:

变换模值:\left ( a/b \right ) mod\: c=\left ( a\: mod\left ( b*c \right ) \right )/b这种方法是用于c和b小的时候,这题就刚刚好。

 

 

 

 接下来可以看代码了,给出了两种解法,并在难理解的地方添加了注释



//解法1 采用分治法在O(logn)的复杂度计算等比数列以求解
using namespace std;

const int MAXN = 2 * 60000 + 5;
const int MOD = 9901;
typedef long long ll;

inline ll qpow(ll a, ll b) //计算a^b
{
    ll res = 1;
    a %= 9901;  //这里要先取模 不然可能溢出
    while (b > 0) {
        if (b & 1) {
            res = (res * a) % MOD;
        }
        a = (a * a) % MOD;
        b >>= 1;
    }

    return res;
}

ll calc(ll p, ll c)  //1+p^1+p^2+...+p^c
{
    if (c == 0)
        return 1;
    if (c == 1)
        return p + 1;
    if (c & 1) {
        return calc(p, c / 2) * (qpow(p, c / 2 + 1) + 1) % MOD; //见上面分析
    }
    return (calc(p, c - 1) + qpow(p, c)) % MOD; //若n为偶数,取前n-1项直接转化为n为奇数的情况
}

int main (){
    ios::sync_with_stdio(false);

    map<ll, ll> mp;
    ll a, b;
    cin >> a >> b;
    if (b == 0) {
        cout << 1 << endl;
        return 0;
    }
    for (int i = 2; i * i <= a; ++i) {  //进行质因数分解,mp保存的是质因数的值和个数
        if (a % i == 0) {
            int cnt = 0;
            while (a % i == 0) {
                a /= i;
                ++cnt;
            }
            mp[i] = cnt;
        }
    }
    if (a > 1)  //对应a为质数的情况
        mp[a] = 1;
    ll ans = 1;
    for (map<ll, ll>::iterator it = mp.begin(); it != mp.end(); ++it) {
        ans = (ans * calc(it->first, it->second * b)) % MOD;
    }
    cout << ans << endl;

    return 0;
}


//解法2 除法取模 变换模值
const int MAXN = 2 * 60000 + 5;
const int MOD = 9901;
typedef long long ll;

inline ll qmulti(ll a, ll b, ll MOD)    //解决直接乘法导致的溢出
{
    ll res = 0;
    a %= MOD;
    while (b > 0) {
        if (b & 1) {
            res = (res + a) % MOD;
        }
        a = (a + a) % MOD;
        b >>= 1;
    }

    return res;
}

inline ll qpow(ll a, ll b, ll MOD) //a^b
{
    ll res = 1;
    a %= MOD;  //这里要先取模 不然可能溢出
    while (b > 0) {
        if (b & 1) {
            res = qmulti(res, a, MOD);  //这里如果直接用*,则会溢出,只能用自己实现的快速乘法取模
        }
        a = qmulti(a, a, MOD);
        b >>= 1;
    }

    return res;
}





int main (){
    ios::sync_with_stdio(false);

    map<ll, ll> mp;
    ll a, b;
    cin >> a >> b;
    if (b == 0) {
        cout << 1 << endl;
        return 0;
    }
    if (a == 0) {
        cout << 0 << endl;
        return 0;
    }
    for (ll i = 2; i * i <= a; ++i) {
        if (a % i == 0) {
            int cnt = 0;
            while (a % i == 0) {
                a /= i;
                ++cnt;
            }
            mp[i] = cnt;
        }
    }
    if (a > 1)
        mp[a] = 1;
    ll ans = 1;
    for (map<ll, ll>::iterator it = mp.begin(); it != mp.end(); ++it) {
        ll mod = MOD * (it->first - 1);
        ll a = (qpow(it->first, it->second * b + 1, mod) - 1 + mod) % mod;
        ll b = it->first - 1;
        ans = qmulti(ans, (a / b), MOD);
    }
    cout << ans << endl;

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值