摘要:人类行为预测是运动规划中一个困难而又关键的任务。这在很大程度上具有挑战性,因为在自动驾驶等现实世界的领域中,可能的结果具有高度的不确定性和多模态集合。除了单一MAP轨迹预测[1,2],获得未来的准确概率分布是一个活跃的领域[3,4]。我们提出了MultiPath,它利用了一组固定的未来状态序列锚来对应轨迹分布模式。在推理时,我们的模型预测了锚上的离散分布,并且对于每个锚,将锚的路点的偏移与不确定性一起回归,在每个时间步长产生一个高斯混合。我们的模型是高效的,只需要一次正向推理就可以获得多模态的未来分布,并且输出是参数化的,允许紧凑的通信和分析性的概率查询。我们在几个数据集上显示,我们的模型实现了更准确的预测,与采样基线相比,这样做的轨迹要少一个数量级。
方法
给定观察值x,包含所有agent 的过去轨迹以及可能的附加上下文信息(如车道语义、交通灯状态),MultiPath的目标是:1)未来轨迹的参数分布:P(s|x) (2)一个紧凑的加权显式轨迹集。
设t表示离散时间步长,设表示 agent在t时刻的状态,未来轨迹